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Summary 

 

The gravitational two-body problem is defined and described. The classical Keplerian 

solution for the motion of two point masses is just one specialized version of this 

problem, and in general the only one which is completely integrable. This chapter will 

provide a general definition of the two-body problem making no assumptions on the 

form of the mass distributions that are mutually gravitating. Then various levels of 

approximation will be introduced, describing the constraints and general results which 

exist for this problem. The general, or full, two-body problem actually couples 

rotational and translational motion in the general case, forming a non-integrable 

problem. Despite this, there are strong constraints on the Hill and impact stability of this 

problem. In addition, relative equilibria and their stability can be discussed in a general 

setting. The chapter culminates in a derivation of the Keplerian solution for the 

dynamics of two point mass bodies orbiting each other.  

 

1. Introduction 

 

The most basic problem in celestial mechanics is the gravitational two-body problem, 

specifically the motion of two mutually attracting mass distributions. The understanding 

of the simplest version of this problem occurred with Copernicus’ placement of the sun 

at the center of the solar system and Kepler’s subsequent first description of the 

elliptical motion of the planets in the solar system. What Kepler discovered based on 

observation and deduction was a special solution to the general gravitational two-body 

problem, where the bodies in motion can be approximated as spheres or point masses. 
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Kepler’s solutions provided the descriptive geometry of planetary motion. These results 

were not placed onto a firm mechanical basis until Newton’s celebrated development of 

the law of gravitation, his laws of motion, and the calculus. Taken together these 

advancements provided a complete development of Kepler’s solutions based on 

physical principles. Beyond this significant advance, Newton’s work also enabled the 

complete gravitational two-body problem to be fully posed and analyzed. Details of the 

dynamics and solutions of the unapproximated problem still required significant 

development and insight, represented by many of the greats of celestial mechanics, 

physics and mathematics. 

 

This chapter addresses this most fundamental problem in a general setting, placing an 

emphasis on recent scholarship and on developing a unified view of the two-body 

problem. Most striking, it is noted that the full two-body problem is not solvable in most 

of its statements, and can only be solved under some very restrictive approximations 

consistent with Kepler’s original solution. A complete derivation of Kepler’s solution is 

given at the close of the chapter, but first we develop and focus on the more general 

statement of this problem and detail the constraints, solutions and approximations that 

enable these problems to be understood. This general approach has been motivated by 

recent scholarship on the general, or so-called full, two-body problem that accounts for 

the coupled rotational and translational motion of the two mass distributions. Early 

work that focused on the coupling between translational and rotational motion traces 

back to Cassini’s Laws on the motion of the moon, although in these cases the 

librational rotation is driven by the orbit, while the influence of the rotation on the orbit 

is generally neglected. Starting in the 1950s, Duboshin studied the dynamics of coupled 

rotational and translational motion and stated the general set of differential equations 

and their fundamental integrals of motion. In the 1970s Kinoshita developed 

perturbation theories for these problems under the assumption of relatively weak 

coupling between the different modes of motion. In the 1990s research into the 

generalized version of this problem was explored by a number of researchers. Wang, 

Krishnaprasad, and Maddocks approached the problem from a geometrical mechanics 

approach and explored the existence and stability of relative equilibria, albeit under the 

assumption that one of the bodies was a sphere. Maciejewski considered the fully 

general problem and explored the properties of relative equilibria as well as several 

different ways to pose the problem. In the 2000s a series of articles by Scheeres 

explored constraints on the solutions to the full two-body problem and applied this 

problem to the dynamics of binary asteroids and the evolution of rubble pile asteroids. 

Significant advances in the study of the averaged full two-body problem was made by 

Boué and Laskar, generalizing the classical Cassini states and showing how they fit into 

a larger set of integrable motions for the averaged problem. 

 

The approach taken in this chapter is focused on sharp results that do not make strong 

assumptions on the motion, such as are found in averaging theories. Solutions which 

yield general and particular solutions to the problem are given, and constraints for the 

system which act on the full solution space are emphasized. The goal of the current 

chapter is to develop a consistent and unified approach to this problem, relying on 

classical mechanics formulations. Several theorems are introduced and developed to 

capture key results that hold for the general system and some special subsystems. There 

are several results for the general full two-body problem that are not well known and are 
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somewhat surprising and at odds with the classical Kepler solution. 

 

First is that the full two-body problem is in general non-integrable and can exhibit 

chaotic motion (although we will not establish these results here). This occurs either due 

to the coupling of rotational motion of the two bodies with their relative translational 

motion or due to the non-spherical mass distributions of either one of the bodies. 

Second, for the general evolution of the two-sphere problem is that a system with a 

fixed value of angular momentum can have multiple circular orbits, some of which can 

be unstable. Only when the system is limited to two point-mass distributions does it 

become a fully integrable problem. In the following we work through a number of these 

different results and only arrive at the integrable version of the problem in the last 

section. 

 

2. Body and Mass Distribution Specifications 

 

The core assumption we make in this chapter is that the mass distributions of the two 

bodies are rigid, meaning that we do not account for any deformation in their shape or 

mass distribution. Figure 1 provides a graphical definition of the problem, with the 

following section providing a mathematical description. 

 

 
 

Figure 1. The full gravitational 2-Body Problem and its degrees of freedom 

 

2.1. Mass and Center of Mass 

 

Assume that there exist two rigid bodies with distributed masses, characterized by 

having finite densities and well defined limits. Their differential masses are defined as 

 

 i idm dV ρ  (1) 

 

where i  is the varying density of the i th body, 1, 2i  , and ρ  is the position of the 

mass element referenced to some frame. The density is zero when ρ  is taken outside of 

the body and is finite within the body, denoted as i . With this definition the total mass 

of each body equals  
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i i
i

M dm   (2) 

 

and the location of each of the body’s center of mass is computed as  

 

1
i i

ii

dm
M

 r ρ  (3) 

 

The joint mass distribution of the system is defined via the differential mass element  

 

1 2dm dm dm   (4) 

 

and the joint bodies as  1 2, . This allows the total mass of the system to be defined 

as  

 

1 2M M dm    (5) 

 

The barycenter of the system is then found as  

 

1 2

1
dm

M M


 R ρ  (6) 

 

As will be discussed later, we can take R 0  in general.  

 

2.2. Relative Orientations 

 

The orientation of the bodies is defined by rotation dyadics that transform a vector in 

the body-fixed frame into inertial space, denoted as 1A  and 2A . Then the complete 

specification of each body in an inertial frame is  1 2 1 2, , ,r r A A  and the relative 

position and orientation of the bodies with respect to each other is  ,r A  where the 

relative position and attitude of body 2 relative to body 1 is defined as  
 

2 1 r r r  (7) 

 
T
1 2 A A A  (8) 

 

As each of these terms represent 3 degrees of freedom, to specify the relative position 

and orientation of two rigid bodies requires a total of 6 degrees of freedom. These are 

called the internal or relative degrees of freedom. To orient these internal degrees of 

freedom with respect to an inertial frame requires an additional 3 degrees of freedom, 

represented by the rotation dyadic 1A . Figure 1 shows a graphical representation of this 

full system. We note that each of the rigid bodies has an angular velocity i  that 

defines the instantaneous rate of rotation between the body-fixed frame and an inertial 

frame.  
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2.3. Moments of Inertia 

 

An additional mass distribution quantity of interest is the inertia dyadics of each body, 

defined by  

 
2

i i
i

dm  
 I U ρρ  (9) 

 

where U  is the identity dyadic and the product of two vectors, e.g. ρρ , is a dyad. The 

coefficients of this dyadic can be computed in closed form for special cases such as 

constant density spheres, ellipsoids, and polyhedra.  

 

The inertia dyadic of the entire system can also be specified as  

 
2 dm  

 I U ρρ  (10) 

 

and simplifies into the individual inertia dyadics and the inertia dyadic of the two 

masses if the system is computed relative to the barycenter  

 

 21 2
1 2

1 2

ˆ ˆ
M M

r
M M

   


I U rr I I  (11) 

 

where the hat designates a vector as a unit vector. 
 

Of interest later is the moment of inertia relative to a fixed direction, Ĥ , computed as  

 

ˆ ˆ
HI   H I H  (12) 

 

Note that HI  is a function of the relative position of the two masses and their 

orientation, all relative to the unit vector Ĥ .  

 

Also of interest is the polar moment of inertia, computed as one-half of the trace of the 

total inertia  

 

 P

1
trace

2
I  I  (13) 

 

 21 2
1 2

1 2

1
trace

2

M M
r

M M
  


I I  (14) 

 

Note that the polar moment of inertia for a 2-body system is only a function of the 

separation between the bodies, or  PI r , and is independent of the orientation of the 

two mass distributions. An important inequality can be proven between the polar 

moment of inertia and the moment of inertia relative to a fixed direction  
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PHI I  (15) 

 

which holds for any fixed direction Ĥ . 

 

2.4. Body Shapes and Geometry 

 

In the following we will assume that both bodies are convex. This is not an essential 

assumption but makes it simpler to discuss situations when the two bodies can come 

into contact. If they are both convex, then at every relative configuration of the system 

there is a well defined minimum distance between the bodies  ˆd r,A  defined as the 

radius at which the two bodies touch for their relative configuration. This distance 

changes smoothly with r̂  and A  and is constant for all rotations of A  about the unit 

vector r̂ . If non-convex bodies are assumed then there is the potential for multiple 

distances between the distributions at a given relative configuration and discontinuities 

in the minimum distance as a function of r̂  and A . 

 

The maximum of these minimum distances can be specified as  ˆ,
ˆmax ,D d r A r A . 

This quantity is of fundamental interest for any two body system as beyond this distance 

the two bodies can never impact with each other. This limit can be defined independent 

of whether the bodies are convex or not.  

 

3. Newtonian Gravitational Attraction 

 

Having defined the two bodies and their mass distribution, we next consider the relative 

forces that these distributions apply to each other due to Newton’s law of gravitational 

attraction.  

 

3.1. Relative Forces 

 

Newton’s fundamental law of gravitational attraction states that two differential mass 

elements will experience an attraction between them proportional to the product of the 

masses, inversely proportional to the square of the distance between them and directed 

along their relative position. Given our definition of the relative position vector r  as 

going from body 1 to body 2 the differential force that a mass element in body 1 places 

on a mass element in body 2 is  

 

 1 2
12 2 2 1 13

2 2 1 1

dm dm
d      

   
F r A ρ A ρ

r A ρ A ρ
 (16) 

 

where we recall that 2 1 r r r  and iρ  is the position of a mass element of body i  

relative to its center of mass. The differential force of a mass element in body 2 on a 

mass element in body 1 is simply 12d F  in accordance with Newton’s law of action and 

reaction. To compute the total force that body 1 exerts on body 2, and vice-versa, these 

differentials are integrated over both mass distributions:  
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12 12
1 2

d  F F  (17) 

 

and 21 12 F F . 

 

The differential force can also be derived from a scalar potential function, defined as the 

differential potential gravitational energy between the bodies  

 

1 2

2 2 1 1

dm dm
dU  

   r A ρ A ρ
 (18) 

then  

 

 12

2 2

dU
d


 

 
F

r ρ
 (19) 

 

 21

1 1

dU
d


 

 
F

r ρ
 (20) 

 

Note that 
 i i i

dU dU 


  r ρ r
 in general.  

 

The gravitational potential energy between the bodies is then defined by integrating this 

differential potential over both bodies  

 

 1 2 1 2
1 2

, , ,U dU  r r A A  (21) 

 

   1 1 2 2

1 2 2 1 2 2 1 1

dm dm


     
ρ ρ

r r A ρ A ρ
 (22) 

 

where the integration variables iρ  are expressed in their respective body-fixed frames 

and all terms in the vector magnitude are specified in inertial space. The forces of these 

bodies on each other are then computed as  

 

12

2

U
 


F

r
 (23) 

 

21

1

U
 


F

r
 (24) 

 

3.2. Relative Moments 

 

For bodies with finite mass distributions it is also necessary to compute the mutual 

moments of the force (or moments) that are exerted on each other. The moment that 
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body 1 exerts on body 2 is found by integrating the differential moment over both 

bodies:  

 

12 2 2 12d d  M A ρ F  (25) 

 

12 2 2 12
1 2

d   M A ρ F  (26) 

 

The moment can also be related to the mutual potential, although the details are more 

involved. This is found by taking the partial of the mutual potential with respect to the 

infinitesimal rotations about each axis of body 2, which we represent as 12 2
U  θM . In 

practice, once the relative attitude of body 2 is defined explicitly using 2A  the partials 

with respect to the angles can be computed from this relationship. The moment acting 

on body 1, 21M , is similarly computed as 
1

U θ . It must be noted that the mutual 

moments are not equal and opposite, but that their sum equals the negative moment of 

the total gravitational force between the bodies  

 

 12 21 2 1 12    M M r r F 0  (27) 

 

meaning that we do not need to solve for one of the moments if the force is known.  

 

- 

- 

- 
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