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Summary  

 

Delay differential equation models can generate rich dynamics using minimum number 

of parameters. This characteristic enables such models to play important roles in a 

growing number of areas of diabetes studies. Such areas include the insulin/glucose 

regulatory system, intravenous glucose tolerance test (IVGTT), and insulin therapies. In 

this paper, a review of such models is presented together with some computational 

results and brief summaries of theoretical results for the cases of models for ultradian 

oscillations of insulin and models for diagnostic tests. 

 

1. Introduction 

 

Diabetes mellitus is a disease of the glucose-insulin regulatory system. It is classified 

into two main categories. Type 1 diabetes which is juvenile onset and insulin-dependent 

and Type 2 diabetes which is adult onset and insulin-independent. Complications of the 

disease include retinopathy, nephropathy, peripheral neuropathy, blindness. The disease 

is affecting hundreds millions of people worldwide (type 2 diabetes mellitus had an 



MATHEMATICAL PHYSIOLOGY – Delay Differential Equation Models in Diabetes Modeling: A Review – Athena Makroglou, 
Iordanis Karaoustas, Jiaxu Li and Yang Kuang 

©Encyclopedia of Life Support Systems (EOLSS) 

estimated incidence of 151 million in the year 2000), which has motivated many 

researchers to study the mathematical, computational and medical problems associated 

with it. Articles about the prevalence and the problems of diabetes appear frequently in 

various media outlets. 

 

Type 1 diabetes is considered to be the result of an immunological destruction of the 

insulin-producing -cells. According to Lupi and Del Prato (2008), p. 560, the normal 

pancreas contains approximately 1 million islets of Langerhans and each islet includes 

-cells ( 60 80%) ,-cells (20 30%) , somatostatin (-cells) (5 15%)  and pancreatic 

polypeptide (PP-cells). 

 

Type 2 diabetes is the result of insulin resistance. The term insulin resistance usually 

connotes resistance to the effects of insulin on glucose uptake, metabolism, or storage, 

due to excessive hepatic glucose production and defective -cell function (cf. Lupi and 

Del Prato (2008), p. 556). 

 

For more information about the pathogenesis of diabetes we refer for example to 

Jaïdane and Hober (2008) (type 1 diabetes), and to Lupi and Del Prato (2008) (type 2 

diabetes). 

 

Treatment of type 1 diabetes is based on the administration of insulin of various types in 

a number of ways. Insulin was discovered in 1921 by Bantig, Best, Collip and Macleod. 

Such insulin administration ways include subcutaneous injections and use of pumps. 

Cure of type 1 diabetes involves pancreas transplantation and islet transplantation. 

 

Many mathematical models have been developed for studying problems related to 

diabetes. These include Ordinary Differential Equations (ODEs), Delay Differential 

Equations (DDEs), Partial Differential Equations (PDEs), Fredholm Integral Equations 

(FIEs) (in the estimation of parameters problem), Stochastic Differential Equations 

(SDEs) and Integro-Differential Equations (IDEs). We refer for example to the review 

papers Makroglou, Li, Kuang (2006), Pattaranit and van den Berg (2008), for more 

details about several such models and corresponding bibliography. 

 

For information about numerical methods for solving delay differential equations we 

refer for example to Bellen and Zennaro (2003), see also the web page 

http://www.scholarpedia.org/article/Delay-differential_equations. 

 

Recently, several papers have appeared in the literature which show renewed interest in 

the models of insulin secretion introduced by G. H. Grodsky and his co-workers in the 

late 1960s, 1970s and 1980s. Grodsky introduced the so called threshold hypothesis for 

the pancreatic granules according to which each granule secrets its insulin contents if 

glucose is above a certain threshold level. Such recent papers (revisiting, modifying, 

extending this work but using ODEs mainly) include: Pedersen, Corradin, Toffolo, 

Cobelli (2008), (the paper describes also the current state of the art accompanied by rich 

bibliographical information. Their model includes the notion of distinct pools of 

granules as well as various mechanisms, like priming, exocytosis etc, and it is claimed 

to be the first physiology-based one to reproduce the staircase experiment, which 

underlies derivative control, that is the pancreatic capacity of measuring the rate of 
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change of the glucose concentration).Mari and Ferrannini (2008) (the paper includes an 

interesting historical background presentation too). 

 

In this chapter a review of some mathematical models in the form of delay differential 

equations is given, accompanied by some computational results using Matlab and 

elements of their theoretical analysis. The organization of the chapter is as follows: 

Section 2 contains the description of the models and some computational results and 

brief summaries of theoretical results. Two cases are covered here, the case of models 

for ultradian oscillations of insulin (Section 2.1) and the case of models used in 

diagnostic tests (Section 2.2). Concluding remarks are in Section 3. The notation is kept 

as in the original papers for easy reference. The Matlab function DDE23 was used for 

obtaining graphs of models in the form of DDE systems, see for example the tutorial 

http://www.runet.edu/~thompson/webddes/tutorial.html for help with its use. 

 

2. Models in the Form of Delay Differential Equations 

 

Delay differential equations (DDEs) have been used as mathematical models in many 

areas of Biology and Medicine. Such areas include Epidemiology, Population Biology, 

Immunology, Physiology, Cell mobility. 

 

Delayed effects often exist in the glucose-insulin regulatory system, for example, the 

insulin secretion stimulated by elevated glucose concentration level and hepatic glucose 

production. Therefore the delays need to be taken into account when modeling the 

systems. General approaches include the technique of compartment-split by introducing 

of auxiliary variables in ordinary differential equations (ODEs), and modeling in delay 

differential equations (DDEs) by using explicit time delays in either discrete or 

distributed forms. 

 

The delays in the compartment-split approach are classified as “soft delays” by using   

kernel that is an approximation of the Dirac kernel, while the explicit delays in models 

as “hard delays”. Apparently, modeling by explicit delays is more natural and accurate, 

although the analysis is usually harder. 

 

Models in the form of delay differential equations grouped according to their 

functions/purposes include: 

 Models used to analyze the ultradian insulin secretion oscillations, 

 Models used with diagnostic tests, 

 Models related to insulin therapies, 

 Models taking intracellular activity of -cells into account.  

 

Due to limitations with respect to the number of references and the number of pages, 

models of the first and 2nd category are going to be presented here. 

 

2.1 Ultradian Insulin Secretion Related Models 
 

Insulin is released in a biphasic manner when the glucose concentration is raised from 

subthreshold to stimulatory levels, with a rapid peak at 2-4 min (first phase), a decrease 

lasting 10-15 min (pulsatile insulin secretion) followed by a gradual increase within the 
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next couple of hours (50-120 minutes), cf. Chew et al (2009), (second phase, ultradian 

insulin secretion). 

 

As mentioned in Chew et al (2009), ultradian oscillations have been seen after meal 

ingestion, during continuous enteral nutrition, and during intravenous glucose infusion. 

 

Historically, it was in 1923 when rapid and slower oscillations in the peripheral 

concentrations of glucose were reported by Karen Hansen and half a century later rapid 

oscillations in the peripheral insulin concentrations were demonstrated. 

 

As several authors mention, the precise mechanisms generating ultradian oscillations 

are not fully understood yet and the two most common mechanisms mentioned are: 

 Instability of the glucose-insulin feedback loop, where the insulin oscillations 

entrain these of the glucose 

 Existence of an intrapancreatic pacemaker. 

 

Entrainment means the ability of a self-oscillating system when perturbed exogenously 

with a periodic stimulus, to adjust its period of oscillation to that of the stimulus. The 

entrainment ability seems to have been lost in diabetic patients with type 2 diabetes. 

 

Two time delays exist in the glucose-insulin regulatory system, (cf. Sturis, Polonsky, 

Mosekilde, Van Cauter (1991)). To model the ultradian insulin secretion oscillations in 

the regulation with time lags, Sturis et al (1991) proposed a model in ODE utilizing the 

compartment-split technique. This model was later simplified by Tolić et al (2000). 

Several models based on this model were proposed consequently. Examples of such 

models are (see also Makroglou, Li, Kuang (2006)), Drozdov and Khanina (1995), Li, 

Kuang, Maison (2006), Li and Kuang (2007). 

 

The model in Sturis, Polonsky, Mosekilde, Van Cauter (1991) and models in papers 

presenting extensions of it, like the models in Li, Kuang and Mason (2006), Tolić, 

Mosekilde and Sturis (2007), make use of certain functions ( 1 2 5, , ,f f f ) given below 

with plasma glucose is denoted by G and plasma insulin or interstitial insulin by I:  

 

1 m 1 g 1( ) = (1 exp(( / ) / )) ,f G R C G V a   (1) 

 

2 b 2 g( ) = (1 exp( / ( ))),f G U G C V   (2) 

 

3 3 g( ) = ( ) ,f G G C V
 

(3) 

 

 i i
4 0 m 0

4

1/ 1/ ( )
( ) = ( ) 1 exp ln ,

I V Et
f I U U U

C


  
      

    

(4) 

 

  5 g p 5
ˆ( ) = 1 exp ( / ) .f I R I V C 

 
(5) 

1( )f G : insulin production stimulated by glucose production, 
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2 ( )f G : insulin-independent glucose utilization,  

3 4( ) ( )f G f I : insulin-dependent glucose uptake (mostly due to fat and muscle cells), 

5 ( )f I : glucose production controlled by insulin concentration. 

 

The values of the parameters may be found for example in Tolić, Mosekilde and Sturis 

(2000). 

The functions 1 2 5, , ,f f f  are assumed to satisfy certain general assumptions by Li and 

Kuang (2007).  

 

Here we present the DDE models by Drozdov and Khanina (1995), Li, Kuang and 

Mason (2006) model, Chen and Tsai (2010), plus the Sturis et al (1991) and Tolić et al 

(2000) models that formed the basis of the DDE models. 

 

Some more such models may be found in Makroglou, Li and Kuang (2006). 

 

2.1.1 Compartment-Split ODE Model Proposed by Sturis et al (1991) 
 

Based on two negative feedback loops describing the effects of insulin on glucose 

utilization and production and the effect of glucose on insulin secretion, the authors 

Sturis, Polonsky, Mosekilde and Van Cauter (1991), developed a six dimensional ODE 

model. Tolić, Mosekilde and Sturis (2000) simplified this model a little bit. This model 

has been the basis of several DDE models. It has the following form (cf. Tolić, 

Mosekilde and Sturis (2000), p. 363) 
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(6) 

 

where ( )G t  is the mass of glucose, p i( ), ( )I t I t  the mass of insulin in the plasma and the 

intercellular space, respectively, pV  is the plasma insulin distribution volume, iV  is the 

effective volume of the intercellular space, E  is the diffusion transfer rate, p i,  t t  are 

insulin degradation time constants in the plasma and intercellular space, respectively, 

inG indicates (exogenous) glucose supply rate to plasma, and 1 2 3( ),  ( ),  ( )x t x t x t
 
are three 

additional variables associated with certain delays of the insulin effect on the hepatic 

glucose production with total time dt . 1( )f G  is a function modeling the pancreatic 

insulin production as controlled by the glucose concentration, 2 3 4, ,f f f  are functions 

for glucose utilization by various body parts (brain and nerves ( 2f ), muscle and fat cells 
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( 3 4,f f ) and 5f  is a function modeling hepatic glucose production). The forms of the 

functions 1 5, ,f f  are given by (1)-(5). 

 

For the two time delays, one is glucose triggered insulin production delay that is 

reflected by breaking the insulin in two separate compartments, and the other one is 

hepatic glucose production delay which is fulfilled by the three auxiliary variables, 

1 2,x x  and 3x . This model simulated ultradian insulin secretion oscillations numerically. 

For conclusions drawn from the simulations we refer to Sturis, Polonsky, Mosekilde, 

Van Cauter (1991). 

 

2.1.2 Single-Delay DDE Model Proposed by Drozdov and Khanina (1995) 
 

A single-delay DDE model is introduced by Drozdov and Khanina (1995) for the 

description of ultradian oscillations in human insulin secretion. The model equations are 

(paper, p.27)  

 

1

3 1 1 2

1 2 2

3 2 0

1 3 2
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1
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t f f L p

dt V V V
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 
  
 

   
     

     

(7) 

 

where ( )x t  (mU) is the amount of insulin in the plasma, ( )y t  (mU) is the amount of 

insulin in the interstitial fluid and ( )z t  (mg) is the amount of glucose treated as 

occupying one compartment; 1 2 3( ), ( ), ( )V l V l V l  are the volumes (in liter) of the plasma, 

interstitial fluid and the glucose compartment respectively, with values  l, 

 l,  l, and 1 3T  min, 2 100T  min, are given parameters, L  (mg min
-1

) 

is the rate of glucose delivery from the environment ( 100L  (mg min
-1

) paper, p.28, 

corresponds to the normal delivery of glucose in 150 g day
-1

), 0 = 72p  is a constant, 

0.2E   min
-1

, T  is the delay in glucose production. 

 

The form of the functions 1 3f f  is (note that there is a small typo in the paper’s 2f  

formula in Eq. (9) which was easy to recover from the preceding calculations) 

1

2

2 2
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where xc  is the plasma concentration of insulin, 
1

=x

x
c

V
 (µU ml

-1
), yc  is the remote 

compartment insulin concentration, 
2

=y

y
c

V
 (µU ml

-1
), and zc  is the glucose 

concentration 
3

0.1
=z

z
c

V
 (mg dl

-1
). The authors mention that the form of the functions 

1 3f f  is similar to that proposed in Sturis, Polonsky, Mosekilde, Van Cauter (1991), 

but with different parameter values which they obtained by least squares fitting to 

published data. Initial conditions used in the numerical simulations are, paper, p. 28, 

( ) = 30,  0,  (0) = 20,  (0) = 120.x y zc T c c     

 

Numerical results were obtained for a number of L  and T  values. Stability analysis is 

also presented in the paper for a linearized system of DDEs. The claim is (paper, p. 31) 

that for very small and very large L  values the steady state solution is stable and 

ultradian oscillations do not arise, but for moderate L  values, the steady state solutions 

become unstable and periodic oscillations of insulin and glucose occur. 

 

Figures 1, 2 for plasma insulin and glucose concentrations correspond to Figure 6 of the 

chapter. 

 
 

Figure 1. Plasma insulin concentration in µU ml
-1

, Drozdov and Khanina (1995) DDE 

model 
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Figure 2. Glucose concentration in mg dl
-1

, Drozdov and Khanina (1995) DDE model 

- 

- 

- 
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