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Summary 
 
Because linear dynamic models provide the basis for so many useful applications (e.g., 
stability analysis, control systems design, dynamic model identification), they have been 
used extensively in applications ranging from electronic circuit theory to industrial 
process control to financial forecasting. Linear models are not adequate to all 
applications, but motivate interest in various types of nonlinear dynamic models. 
Feedforward block oriented models represent one of the simplest and best known 
classes of nonlinear models, and they have been widely adopted as a simple alternative 
to linear dynamic models.  
 
These models consist of series, parallel, or combined series/parallel interconnections of 
linear dynamic models and static (i.e., memoryless) nonlinearities, the best-known 
examples of such models being the Hammerstein and Wiener models. The class of 
feedback block-oriented models is based on the same two types of component 
subsystems, but combined using feedback interconnections. As a consequence, these 
models exhibit a wider range of dynamic behavior, often including subtle input-
dependent stability characteristics that are extremely undesirable in many applications, 
and they are generally more difficult to analyze than feedforward block-oriented 
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models.  The best-known feedback block-oriented model is the Lur’e model, consisting 
of a single static nonlinearity connected as a feedback element around a linear dynamic 
system.  
 
This chapter presents a broad overview of block-oriented models, including both the 
feedforward and feedback classes. The chapter includes discussions of the two types of 
component subsystems on which all block-oriented nonlinear models are based, and 
detailed discussions of the Hammerstein, Wiener, and Lur’e models. The relationship of 
Hammerstein and Wiener models to the larger class of Volterra models is also 
discussed, along with the qualitative behavioral differences between the feedforward 
and feedback block-oriented model classes. 
 
1. Introduction 
 
Block-Oriented models constitute a practically important class of mathematical models 
that are useful in describing the dynamic behavior of certain physical, biological, 
engineering, or other classes of systems. Historically, linear dynamic models have been 
extremely important in many different application areas because they are amenable to 
much mathematical analysis. Consequently, linear models serve as an effective basis for 
the characterization of important qualitative behavior like stability, for the design of 
feedback control systems, for the development of empirical models, among other 
applications.  
 
Useful as these linear dynamic models are, however, they are not adequate to all 
applications, motivating substantial research efforts in the general area of nonlinear 
systems theory.  This research activity has extended in many different directions, and 
many different classes of nonlinear dynamic models have evolved as a result.  The class 
of block-oriented nonlinear models considered in this chapter is based on 
interconnections of linear dynamic models with static (or memoryless) nonlinearities.  
More specifically, this chapter considers two distinct subsets of this model class: the 
feedforward block-oriented models, obtained by restricting consideration to parallel or 
series interconnections, and the class of feedback block-oriented models, which also 
allow feedback interconnections.  
 
Because they are the more popular in practice, the primary focus of this chapter is the 
feedforward block-oriented model class. The popularity of this model class arises in part 
from the fact that feedforward block-oriented models are in many respects the simplest 
and best-behaved extension of linear dynamic models into the realm of nonlinear 
systems. For example, feedforward block-oriented models based on asymptotically 
stable linear subsystems and continuous static nonlinearities are easily shown to be 
asymptotically stable themselves, regardless of the inputs considered. In marked 
contrast, feedback block –oriented systems can exhibit strongly input-dependent 
stability characteristics.  
 
More generally, feedback block-oriented models exhibit a wider range of possible 
qualitative behavior than feedforward block-oriented models do, but this fact can be 
significant disadvantage in applications where the real-world system to be modeled 
exhibits mild but significant nonlinear dynamics. For example, biological systems like 
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the fly photoreceptor that are inherently stable but which exhibit strongly nonlinear 
dependence on stimulus intensity have been frequently described using feedforward 
block- oriented models.  Further, the qualitative behavior of feedback block-oriented 
models is more difficult to analyze than that of the feedforward class, as the stability 
differences just noted between these two models subclasses illustrates. 
 
 In particular, much more of our intuition about the behavior of linear dynamic models 
extends to feedforward block-oriented models than to any other popular nonlinear 
dynamic model class. Finally, because these models are most often identified form 
discrete-time data sequences, often as a basis for subsequent computer –based 
simulation, analysis, or control applications, this chapter restricts consideration to the 
discrete –time case. 
 
The remainder of this chapter is organized as follows. Section 2  presents detailed 
discussion of the two fundamental components on which all block-oriented models are 
based: linear dynamic models and static nonlinearities. Next, Sections 3 and 4 present 
detailed discussions of Hammerstein models and Wiener models, respectively, the two 
best-known members of the feedforward block-oriented model class. Section 6 briefly 
considers the general range of qualitative behavior this model class is capable of 
exhibiting.  
 
Next, Section 7 discusses the feedback block-oriented model class, taking the Lur’e 
model as a prototype and considering some of the important consequences of allowing 
feedback interconnections. Section 8 presents a brief overview of some of the practical 
issues that arise in the process of fitting block-oriented and other nonlinear dynamic 
models to observed input/output data. Finally, Section 9  concludes this chapter with a 
recap of the key ideas and a brief discussion of some extensions and related topics.  
More detailed treatments of the topics discussed here may be found in the bibliography 
at the end of this chapter. 
 
2. The Building Blocks. 
 
The following discussions briefly describe the basic building blocks for all of the block-
oriented models considered in this chapter: linear dynamic subsystems and static 
nonlinearities. 
 
 2.1. Linear Dynamic Subsystems 
 
The general class of linear models may be defined behaviorally as those models L 
satisfying the principle of superposition: 
  
[ ] [ ] [ ]k k ka b a b+ = +L L Lu u v .                 (1) 

 
 In this description, { }ku and { }kv represent two input sequences and a and b are any 
two real numbers. Most popular linear systems-and all of the linear systems considered 
in this chapter-are also time-invariant, meaning that if the input sequence is shifted by j 
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time units from { }ku to{ }k ju −      , the response  { }ky is shifted by the same amount, 

to { }k j−y . It is a standard result that any linear, time –invariant (or LTI)model is 

completely characterized by its impulse response, which is the sequence { }ih generated 

in response to the impulse input, 1k =δ for k=0 and  0k =δ for 0.k ≠  In particular, 
given the impulse response, the response of the linear model to an arbitrary input 
sequence { }ku is given by the discrete convolution relation: 

 

k i k i
i

h u
∞

−
=∞

= ∑y   (2) 

Generally, the linear dynamic models used to describe real-world systems are also 
causal, meaning that the impulse response coefficients { }ih are identically zero for i<0; 
this relation means that the causal systems cannot respond to future values of the input 
sequence, a reasonable requirement when modeling physical systems. 
 
Although it does provide a complete description of LTI system behavior, a significant 
practical disadvantage of the impulse response { }ih is that it constitutes an infinite 
sequences of numbers. To overcome this difficulty, it is useful to introduce three finite 
parameterizations that are popular in practice. Autoregressive moving average models 
are defined by the difference equation. 
  

1 0
,

p q

k i k i i k i
i i

a b− −
= =

= +∑ ∑y y u                                                                          (3)   

 
for some set of constants { }ia and { }ib ; the integers p and q appearing in this equation 
are called order parameters and this model structure will be denoted ARMA (p,q) for 
convenience. It is worth noting that certain linear dynamic phenomena involving 
unusually slow decays (specifically, non-exponential decays) or long –range 
correlations (e.g., 1/f noise phenomena) cannot be described by ARMA(p,q) models for 
any finite p and q, but most popular linear models do belong to this class. Taking p=0 in 
this representation corresponds to omitting the first sum from Eq. (3)and leads to the 
second important linear models class considered here: the finite impulse response or FIR 
models. The name for this model class derives form the fact that only a finite number of 
the impulse response coefficients are nonzero for such models: i ih b= for 0 i q≤ ≤ and 

0ih =  otherwise. Finally, the third description considered here is the transfer function, 
obtained by taking the z-transform of the ARMA (p,q) model representation: 
 

( ) 0

11

q i
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p i
ii

b z
H z
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−
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=
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∑
∑

 (4) 
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This model may be viewed most simply as a rewriting of Eq. (3)in terms of the unit 
delay operator 1z− , but it is also closely related to the frequency response of the 
linear system, H (ω ), which may be obtained by evaluating H(z) at i Tz = e ω where T 
is the time between successive samples ku and 1ku + . 
 
2.2. Static Nonlinearities  
 
The static nonlinearities on which block-oriented models are based are simply functions 
mapping one real number into another. One of the most popular classes of functions is 
the polynomial class: 

( ) 0

0
, 1.

r
g x x xα

=
= ≡∑   (5) 

 
The study of these functions dates back at least as far as the ancient Greeks, so the 
variety of available analytical results is enormous. In addition, polynomials are easy to 
evaluate and are extremely well-behaved mathematically, being smooth (i.e. infinitely 
differentiable ), continuous and linearly dependent on the coefficients α .The 
Weierstrass approximation theorem establishes that any continuous function f (x) may 
be approximated arbitrarily well on any compact (i.e., closed and bounded)subset of the 
real line by a polynomial of sufficient degree r. Further, it can be shown that the class of 
feedforward models(i.e. those involving only series and parallel interconnections) based 
on linear FIR subsystems and polynomial nonlinearities is equivalent to the class of 
finite Volterra models, described by the input –output representation 

( )0
1

N
n

k M
n

v k
=

= + ∑y y
  (6) 

 ( ) ( ) 1
1

1,...,
0 0

n
n

M M
n
M n n k i k i

i i
v k i i u uα − −

= =
= ∑ ∑  

 
Models of this class can approximate the dynamics of any fading memory system with 
arbitrary accuracy by taking M and N sufficiently large, a result that may be viewed as a 
dynamic extension of the Weierstrass approximation theorem. The fading memory class 
includes the finite-dimensional linear ARMA (p,q) systems discussed in Section 2.1 and 
is characterized by a weak dependence on events in the distant past, in contrast to some 
of the feedback block-oriented model structures discussed in Section 7, which can 
exhibit strong dependence on initial conditions for all later times k(e.g., chaotic impulse 
responses). 
 
Functions that can be implemented with artificial neural networks (ANN’ s )have also 
become quite popular, due in part to another extension of the Weierstrass approximation 
theorem: any continuous mapping : m nf R R→  between finite dimensional Euclidean 

spaces mR and nR  may be approximated arbitrarily well on any concept set by an 
ANN of sufficient complexity. An important difference between ANN’ s and 
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polynomials is that polynomials are unbounded on the real line R, whereas any ANN 
function is bounded due to the saturation nonlinearity (“squashing function”)on which 
the network is based. This observation has important practical consequences for the 
feedback block-oriented structures considered in Section 7 
 
The canonical piecewise –linear (CPWL) functions are defined by  

 

( )0 1
1

( ) sgn
n

j j j j
j

g x a a x b x x c x x
=

⎡ ⎤= + + − + −⎣ ⎦∑ ,  (7) 

where { }jx corresponds to a set of knots, or points at which the local linear functions 

change slope, and 0 1, , ja a b and jc are real –valued constants; these functions are 

continuous at jx if and only if 0jc = . Like polynomials and ANN’ s it has been shown 
that CPWL functions can approximate any continuous function with arbitrary accuracy 
on any compact set, provided the number of knots n is sufficiently large. Further, this 
result applies to multidimensional mappings : m ng R R→ , exactly as in the case of 
ANN functions. Also, note that this class of functions represents the simplest special 
case of the class of spline functions, which are defined by polynomials on the intervals 
[ ]1,n nx x +    between successive knots. 
 
More generally, given an arbitrary basis set ( ){ },xφ   it is often useful to consider 
linear combinations of the form 

( ) ( )
0

r
g x xα

=
= ∑ φ   (8) 

Taking ( )x x=φ  yields the class of polynomials, and if the knots { }nx defining the 
CPWL functions are fixed, these functions may also be represented as in Eq.  
(7).Conversely, this representation is not possible for ANN functions, which depend 
nonlinearly on the network parameters. 
 

 
 

Figure 1:  The Hammerstein model structure 
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3. Hammerstein Models. 
 
One of the most popular block-oriented model structures is the Hammerstein model, 
consisting of the series connection of a static nonlinearity followed by a linear dynamic 
subsystems as show in the block diagram in Fig. 1. if we adopt the impulse –response 
representation for the linear subsystems, we immediately obtain the following 
input/output description of the Hammerstein model: 
 

( )
0

i k i
i

h g u
∞

−
=

= ∑ky
  

 (9) 

Alternatively, given an ARMA(p,q) representation for the linear subsystem, the 
Hammerstein model may be represented more simply as  

( )
1 0

.
p q

k i k i i k i
i i

a b− −
= =

= +∑ ∑y y g u  

  (10) 
If the steady-state gain of the linear subsystem is constrained to be 1, then  

1 0
1,

p q

i i
i i

a b
= =

+ =∑ ∑                                                              (11) 

 
and the steady –state behavior of the Hammerstein model is entirely determined by the 
static nonlinearity: ( )s sg u=y , where su is the steady –state input value and  sy is the 
corresponding steady-state output value.  Hence, if the steady-state characterization is 
known for the system of interest, the nonlinear function g(.) is determined and the 
model identification problem reduces to that of determining the linear model 
coefficients ia and ib , subject to the constraint (11). 
 
One context in which this model structure arises naturally is the square-law detector, 
used in recovering the information encoded in amplitude modulated communications 
signals. This system consists of the nonlinearity ( )g = 2x x followed in series by a  
linear lowpass filter, obtained through a suitable choice of the linear dynamic model 
coefficients ia  and ib . For the FIR case p=0, substituting ( )g = 2x x into Eq. (9)leads 

to the Volterra model defined by Eq.(6).with , 2M q N= = ,and all ( )1,...,n ni iα =0 

unless 1 ni i= = , in which case ( ), ,i iα is proportional to the linear model 

coefficient ib . This idea has been applied in modeling the response of fly 
photoreceptors to light pulse stimuli. Specifically, second –order Volterra models fit to 
the observed stimulus –response data have been observed to approximate this diagonal 
form.  Refitting this experimental data directly to a Hammerstein model permits the use 
of higher-order polynomial nonlinearities, giving significantly better models. In 
particular, one disadvantage of the Volterra representation is the large number of 
parameters required in the general case, restricting most applications to N=2 or N=3. In 
contrast, the Hammerstein model involves only a few parameters, permitting 
consideration of much higher-order polynomials.  Hammerstein models are also popular 
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in modeling mechanical or chemical engineering systems.  One reason for the popularity 
of the Hammerstein model is that it does not greatly complicate the problem of 
controller design, relative to that for linear dynamic models.  For example, model 
predictive control (MPC) is a model –based control strategy that has become extremely 
popular in industrial practice:  the underlying idea is to formulate a performance 
optimization problem to determine the control input sequence { }ku that forces the 

output sequences { }ky to follow a desired trajectory subject to various practically-
motivated constraints.  Generally, this strategy employs linear FIR models, but 
extension has been developed recently for Hammerstein models. 
 
Generally, the static nonlinearity g(.) is not known a priori and must be determined 
empirically. A particularly popular algorithm for this case is that of Narendra and 
Gallman, which proceeds as follows. Assuming the nonlinearity is parameterized as in 
Eq. (9) and the linear subsystems is described by an ARMA (p,q) model , the overall 
model may be written as   
 

( )
1 0 0

p q r

k i k i i j j k i
i i j

a b c− −
= = =

= +∑ ∑ ∑y y uψ                                                        (12)   

  
Initially, the coefficients jc are fixed at some preliminary estimates 0

jc ,yielding an 

unconstrained identification problem for the linear model parameters ia and ib , which 
may be solved by standard methods like least squares. These parameters are then fixed 
at their estimated values and the parameters jc are re-estimated from the available 
input/output data.  
 
This process is iterated to convergence, which can fail to occur if the initial parameter 
estimates are too far from their values; in practice, however, this algorithm has usually 
been found to work reasonably well and convergence has been established for the case 
of linear FIR subsystems, provided  { }ku is an independent , identically distributed 
(i,i,d) random sequence (i.e., “white noise”). This observation emphasizes the role of 
the input sequence in empirical model identification, a point revisited in Section 8.  
 
Finally, it is important to note that the basic Hammerstein model structure contains an 
inherent overparameterization, which must be addressed in any empirical model 
identification procedure. This point may be most easily seen by considering the impulse 
response representation (9): if all of the impulse response coefficients { }ih are 
multiplied by an arbitrary nonzero constant λ and the function g(.)is multiplied by 1/λ , 
there is no net change in the input/output behavior of the resulting Hammerstein model. 
To obtain unique model parameter estimates, it is necessary to impose a constraint. 
Most commonly, the constraint chosen is 1=b0 for simplicity, but the steady-state gain 
constraint given in Eq.(11)is an equally effective alternative. 
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