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Summary 
 

Polynomial matrix techniques can be used as an alternative to state-space techniques 
when designing controllers for linear systems. In this article, we show how polynomial 
techniques can be invoked to solve three classical control problems: dynamics 
assignment, deadbeat control and H2 optimal control. We assume that the control 
problems are formulated in the state-space setting, and we show how to solve them in the 
polynomial setting, thus illustrating the linkage existing between the two approaches. 
Finally, we mention the numerical methods available to solve problems involving 
polynomial matrices. 
 
1. Introduction 
 
Polynomial matrices arise naturally when modeling physical systems. For example, many 
dynamical systems in mechanics, acoustics or linear stability of flows in fluid dynamics 
can be represented by a second order vector differential equation 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. VIII – Controller Design Using Polynomial Matrix Description - 
Didier Henrion, Michael Šebek 

©Encyclopedia of Life Support Systems (EOLSS) 

0 1 2( ) ( ) ( ) 0.A x t A x t A x t+ + =  (1) 
 
Upon application of the Laplace transform, studying the above equation amounts to 
studying the characteristic matrix polynomial 

2
0 1 2( ) .A s A sA s A= + +  (2) 

 
The constant coefficient matrices A0, A1 and A2 are known as the stiffness, damping and 
inertia matrices, respectively, usually having some special structure depending on the 
type of loads acting on the system. For example, when A0 is symmetric negative definite, 
A1 is anti-symmetric and A2 is symmetric positive definite, then the equation models the 
so-called gyroscopic systems. In the same way, third degree polynomial matrices arise in 
aero-acoustics.  
 
In fluid mechanics, the study of the spatial stability of the Orr-Sommerfeld equation 
yields a quartic matrix polynomial. It is therefore not surprising to learn that most of the 
control design problems boil down to solving mathematical equations involving 
polynomial matrices. For historical reasons, prior to the sixties most of the control 
problems were formulated for scalar plants, and they involved manipulations on scalar 
polynomials and scalar rational functions.  
 
The extension of these methods to the multivariable (multi-input, multi-output) case was 
not obvious at this time, and it has been achieved only with the newly developed concept 
of state-space setting. In the seventies, several multivariable results were therefore not 
available in the polynomial setting, which somehow renewed the interest in this approach. 
Now most of the results are available both in the state-space and in polynomial settings. 
In this article, we study in detail three standard control problems and their solution by 
means of polynomial methods.  
 
The first problem is known as the dynamics assignment problem, a generalization of 
eigenvalue placement. The second problem is called the deadbeat regulation problem. It 
consists of finding a control law such that the state of a discrete-time system is steered to 
the origin as fast as possible, i.e. in a minimal number of steps.  
 
The third and last problem is H2 optimal control, where a stabilizing control law is sought 
that minimizes the H2 norm of some transfer function. All these problems are formulated 
in the state-space setting, and then solved with the help of polynomial methods, to better 
illustrate the linkage between the two approaches. After describing these problems, we 
focus more on practical aspects, enumerating the numerical methods that are available to 
solve the polynomial equations. 
 
2. Polynomial Approach To Three Classical Control Problems 
 
2.1. Dynamics Assignment 
 
We consider a discrete-time linear system 
 

1k k kx Ax Bu+ = +  (3) 
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with n states and m inputs, and we study the effects of the linear static state feedback 
 

k ku Kx= −  (4) 
 
on the system dynamics. One of the simplest problem we can think of is that of enforcing 
closed-loop eigenvalues, i.e. finding a matrix K such that the closed-loop system matrix 
A − BK has prescribed eigenvalues. In the polynomial setting, assigning the closed-loop 
eigenvalues amounts to assigning the characteristic polynomial det (zI − A + BK). This is 
possible if and only if (A, B) is a reachable pair. (See Pole Placement Control for more 
information on pole assignment, and System Characteristics: Stability, Controllability, 
Observability for more information on reachability). 
 
 A more involved problem is that of enforcing not only eigenvalues, but also the 
eigenstructure of the closed-loop, system matrix. In the polynomial setting, the 
eigenstructure is captured by the so-called similarity invariants of matrix A − BK, i.e. the 
polynomials that appear in the Smith diagonal form of the polynomial matrix zI − A + BK. 
Rosenbrock’s fundamental theorem captures the degrees of freedom one has in enforcing 
these invariants.  
 
Let (A, B) be a reachable pair with reachability indices k1 ≥ ··· ≥ km. Let c1(z), ..., cm(z) be 
monic polynomials such that ci+1(z) divides ci(z) and 1

m
i=Σ deg ci(z) = n. Note that some of 

the ci(z) may be units. Then there exists a feedback matrix K such that closed-loop matrix 
A − BK has similarity invariants ci(z) if and only if 
 

1 1
deg ( ) , 1, ..., .

k k

i i
i i

c z k k m
= =

≥ =∑ ∑  (5) 

 
The above theorem basically says that one can place the eigenvalues at arbitrary specified 
locations but the structure of each multiple eigenvalue is limited: one cannot split it into 
as many repeated eigenvalues as one might wish. Rosenbrock’s result is constructive, and 
we now describe a procedure to assign a set of invariant polynomials by static state 
feedback. First we must find right coprime polynomial matrices DR(z) and NR(z) with 
DR(z) column-reduced and column-degree ordered, such that 
 

1 1( ) ( ) ( ).R RzI A B N z D z− −− =  (6) 
 
(See Polynomial and Matrix Fraction Description for the “definition” of a 
column-reduced matrix.) A column-reduced matrix can be put into column-degree 
ordered form by suitable column permutations. Then, we must form a column-reduced 
polynomial matrix C(z) with invariant polynomials c1(z), ..., cp(z) which has the same 
column degrees as DR(z). Finally, we solve the equation 
 

( ) ( ) ( )L R L RX D z Y N z C z+ =  (7) 
 
for constant matrices XL and YL, and let 
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1 .L LK X Y−=  
  
The above equation over polynomial matrices is called a Diophantine polynomial 
equation. Under the assumptions of Rosenbrock’s theorem, there always exists a constant 
solution X and Y to this equation. As an example, take 
 

1 0 0 1 0 1
0 0 1 0 0 0

,
0 0 0 1 1 1
1 0 0 0 0 0

A B

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (8) 

 
as a reachable pair. We seek a feedback matrix K such that A − BK has similarity 
invariants 
 

3 2
1 2( ) , ( ) .c z z z c z z= − =  (9) 

 
Following a procedure of conversion from state-space form to matrix fraction description 
(MFD) form (see Polynomial and Matrix Fraction Description) we obtain 
 

2

2

0
1 1

( ) , ( )
0 1

0 1

R R

z
z z

D z N z
z zz z

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎢ ⎥
⎣ ⎦

 (10) 

 
as a right coprime pair satisfying relation Eq. (6). The reachability indices of (A, B) are the 
column degrees of column-reduced matrix DR(z), namely k1 = 2 and k2 = 2. Rosenbrock’s 
inequalities are satisfied since 
 

1 1 2deg ( ) 2, deg ( ) deg ( ) 4.c z c z c z≥ + ≥  (11) 
 
A column-reduced matrix with column degrees k1, k2 and c1(z), c2(z) as invariant 
polynomials is found to be 
 

2

2

0
( ) .

z
C z

z z z
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 (12) 

 
Then, we have to solve the Diophantine equation 
 

2 2

2 2

0
1 1 0

.
0 1

0 1

L L

z
z z z

X Y
z zz z z z z

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥+ =⎢ ⎥ ⎢ ⎥⎢ ⎥− − −⎣ ⎦ ⎣ ⎦⎢ ⎥
⎣ ⎦

 (13) 
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We find the constant solution 
 

1 0 1 0 0 0
,

0 1 1 0 1 1L LX Y
−⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
 (14) 

 
corresponding to the feedback matrix 
 

1 0 0 0
1 0 1 1

K
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 (15) 

 
yielding the desired dynamics. 
 
- 
- 
- 
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