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Summary 
 
Hybrid systems unify discrete-event and continuous-time dynamics in a manner that 
enables the modeling of software control or embedded systems. The complexity of 
hybrid systems naturally requires the use of algorithmic approaches for analysis and 
design. For analysis and design purposes, it is often useful to abstract a system in a way 
that preserves the desired properties while hiding modeling details that are of no 
interest. This is achieved using state space partitions, such as bisimulations, that 
preserve reachability properties as well as a finite set of propositions. In this chapter, we 
survey notions of bisimulations for discrete, continuous, and hybrid systems. We show 
that interesting classes of hybrid systems can be abstracted to purely discrete systems 
while preserving all properties that are definable in linear temporal logic. 

1. Introduction 

Hybrid systems combine both digital and analog components, in a way that is useful for 
the analysis and design of embedded control systems. Hybrid systems have been used as 
mathematical models for many applications such as automated highway systems, air 
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traffic management systems, embedded automotive controllers, and chemical processes. 
Their wide applicability has inspired research from both control theory and theoretical 
computer science. 
 
The complexity of hybrid system models requires the development of a formal theory of 
modeling abstractions. In the literature, the notions of abstraction or aggregation refer 
to grouping the system states into equivalence classes. Depending on the grouping of 
the original state space, we may have discrete, or continuous abstractions. With this 
notion of abstraction, the abstracted system will be defined as the induced quotient 
dynamics. Theoretical computer science, and, in particular, the areas of concurrency 
theory, and computer aided verification have established formal notions of abstraction 
and model refinement which are used to tackle the state explosion arising in purely 
discrete systems. Given a discrete system, an abstraction is a quotient system that 
preserves some properties of interest while ignoring detail. Properties of interest include 
reachability, safety, liveness, and other properties expressible in various temporal 
logics. 
 
The notion of bisimulation is one such formal notion of abstraction that has been used 
for reducing the complexity of finite state systems such as labeled transition systems. 
Bisimulations are partitions of the state space that preserve observations and 
reachability properties. In addition to reachability, bisimulations of finite transition 
systems preserve all properties that are expressible in temporal logics such as linear 
temporal logic (LTL). The notion of bisimulation has been also instrumental in 
obtaining decidability results for various classes of hybrid systems, by considering finite 
bisimulations of hybrid systems. In the control community, notions that are similar to 
bisimulation have been considered in the hierarchical, supervisory control of discrete 
event systems, and hybrid systems (see survey). Furthermore, bisimulations have also 
been used as a controller synthesis tool for discrete-event systems. 
 
In this chapter, we survey the notion of bisimulation in the context of purely discrete, 
purely continuous, and, eventually, hybrid systems. We first review the well established 
notion of bisimulation for transition systems along with linear temporal logic, a popular 
logic for specifying properties of transitions systems. We then apply the framework of 
bisimilar transition systems to transition systems that are generated by linear control 
systems. Given a continuous-time linear system, and a finite number of propositions, we 
characterize linear quotient maps that result in quotient transition systems that are 
bisimilar to the original system. We show that computing the coarsest bisimulation, 
which results in maximum complexity reduction, corresponds to computing the 
maximal reachability invariant subspace inside a subspace which is related with the 
propositions. 
 
We then focus on finite bisimulations of hybrid systems. Given a hybrid system and 
some desired property, one extracts a finite, discrete system while preserving all 
properties of interest. This is achieved by constructing suitable, finite and computable 
partitions of the state space of the hybrid system. By obtaining discrete abstractions 
which are finite, and preserve properties of interest, analysis can be equivalently 
performed on the finite system, which requires only a finite number of steps. Checking 
the desired property on the abstracted system should be either equivalent to or sufficient 
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for checking the property on the original system. In this chapter, we focus on equivalent 
discrete abstractions of hybrid systems along with some properties they preserve. We 
show that there are many interesting classes of hybrid systems which can be abstracted 
by finite systems for analysis purposes. 

2. Bisimulations of Transition Systems 

Transition systems are graph models, possibly with an infinite number of states or 
transitions. 
Definition 2.1 (Transition Systems) A transition system 0( , , , , )T Q Q= Π → B  consists 
of: 

• A (possibly infinite) set Q of states, 
• A finite alphabet Π  of propositions, 
• A transition relation Q Q→⊆ × , and  
• A satisfaction relation Q⊆ ×ΠB , and 
• A set 0Q Q⊆  of initial states. 

 
A state 1q  is predecessor of a state 2q , and 2q  is a successor of 1q , written 1 2q q→ , if 
the transition relation→contains the pair 1 2( , )q q . A state q satisfies a proposition π , 
written q πB , if the satisfaction relation B  contains the pair ( , )q π . Given a proposition 
π∈Π , we write a b { }q Q qπ = ∈ = π  for the set of states that satisfy π . 
 
The transition system T is finite if the cardinality of Q is finite, and it is infinite 
otherwise. A region is a subset P Q⊆  of the states. The sets of predecessor and 
successor states of P respectively are 
 
Pre( ) { . }P q Q p P q p= ∈ ∃ ∈ →⏐  (1) 
 
Post( ) { . }P q Q p P p q= ∈ ∃ ∈ →⏐  (2) 
 
The set of states that are accessible from P in two transitions is Post(Post(P)), and is 
denoted 2Post ( )P . In general, Post ( )i P  consists of the states that are accessible from P 

in i transitions. Pre ( )i P  is defined similarly. Then  
 
Pre ( ) Pre ( )i

i
P P∗

∈
= ∪̀  (3) 

 
Post ( ) Post ( )i

i
P P∗

∈
= ∪̀  (4) 

 
are the set of states that are backward and forward reachable from P, that is, accessible 
in any number of transitions. In particular, 0Post ( )Q∗  is the set of reachable states of 
the transition system T, and is denoted by Reach( )T . A problem that is of great interest 
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for transition systems is the reachability problem. 
 
Problem 2.2 (Reachability Problem) Given a transition system 0( , , , , )T Q Q= Π → B  
and a proposition π∈Π , is Reach a b( ) 0T π ≠∩ ? 
 
If the proposition π  encodes an undesirable or unsafe region of the state space, then 
solving reachability corresponds to checking if the system is safe. In this chapter, we are 
interested in computational approaches to the solution of the reachability problem. The 
following algorithm computes the reachable space until either a state satisfying π  is 
reached, or no more reachable states can be added. 
 
Algorithm 1 (Forward Reachability Algorithm) 
 
initially 0:R Q= ; 
 
while true do 
 
 if a b 0R π ≠∩  then return “unsafe” end if; 
 
 if Post( )R R⊆  then return “safe” end if; 
 
 : Post( )R R R= ∪  
 
end while  
 
A backward reachability algorithm which starts with a bπ  and checks whether 

a b 0Pre ( ) 0Q∗ π ≠∩  can be similarly constructed. Such iterative algorithmic approaches 
to checking system properties are guaranteed to terminate if the state space of the 
transition system is finite. If the state space is infinite, then there is, in general, no 
guarantee that the forward reachability algorithm will terminate within a finite number 
of iterations of the loop. It could continue adding states forever without ever reaching 
the target region a bπ  or reaching a fixed point R such that Post( )R R⊆ . A practically 
useful goal is to find classes of infinite transition systems whose analysis can be 
performed on equivalent but finite transition systems. This is accomplished by 
constructing suitable finite quotients of the original system which partition the state 
space in a manner that preserves the properties of interest while omitting modeling 
detail. 
 
In addition to reachability, the desired system specification may require more detailed 
system properties. For example, one may wish to encode the requirement that a system 
failure is eventually followed by a return to the normal mode of operation. More 
abstractly, if the transition system visits a region 1P , encoding a failure, then eventually 
it will reach a region 2P , encoding normal operation. Such properties can be encoded as 
formulas in temporal logic. Formulas of temporal logic are thus used to formally specify 
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properties of systems, such as reachability, invariance, or response properties. In the 
sequel, after defining the notion of quotient transition systems, two kinds of equivalence 
relations, language equivalences and bisimulations, are considered along with the 
popular temporal logic Linear Temporal Logic (LTL) whose properties they preserve. 
 
An equivalence relation Q Q⊆ ×∼  on the state space is proposition preserving if for all 
states ,p q Q∈  and all propositions π∈Π , if p q∼  and p πB , then q πB ; that is, the 
region a bπ  is a union of equivalence classes. Given a proposition-preserving 
equivalence relation∼ , the definition of quotient transition system T ∼  is natural. Let 
Q ∼  denote the quotient space, that is, the set of equivalence classes. For a region P, 
we denote by P ∼  the collection of all equivalence classes which intersect P. The 
transition relation →∼ on the quotient space is defined as follows: for 1 2,P P Q∈ ∼ , we 
have 1 2P P→∼  if and only if (iff) there exist two states 1 1q P∈  and 2 2q P∈  such that 

1 2q q→ . The satisfaction relation ∼B  on the quotient space is defined as follows: for 
P Q∈ ∼ , we have P π∼B  iff there exists a state q P∈  such that q πB . The quotient 
transition system is then 0( , , , , )T Q Q= Π →∼ ∼∼ ∼ ∼B� . 
 
2.1. Language Equivalence and Linear Temporal Logic 
 
Let q Q∈  be a state of the transition system 0( , , , , )T Q Q= Π → B . Given a state q Q∈ , 
let { }q qΠ = π∈Π πB⏐  be the set of propositions that are satisfied by q. A trajectory 

generated from q is an infinite sequence 0 1 2...q q q  such that 0q q=  and for all i∈` , we 
have 1i iq q +→ . This trajectory defines the word 0 1 2...q q qΠ Π Π  The set of words that 
are defined by trajectories generated from q is denoted by L(q), and called the language 
of the state q. The set 

0
( )q Q L q

∈∪  of words that are defined by trajectories generated 

from initial stats is denoted by ( )L T , and called the language of the transition system T. 
 
Definition 2.3 (Language Equivalences) Let T be a transition system with state space 
Q. An equivalence relation L∼  on Q is a language equivalence of T if for all states 

,p q Q∈ , if Lp q∼ , then ( ) ( )L p L q= . 
 
Note the every language equivalence is proposition preserving. Every language 
equivalence L∼  partitions the state space and gives rise to the quotient transition system 

LT ∼ , which is called a language equivalence quotient of T. The formulas of Linear 
Temporal Logic (LTL) are interpreted over words, and hence the properties expressed in 
LTL are preserved by language equivalence quotients. 
 
Definition 2.4 (Linear Temporal Logic) The formulas of Linear Temporal Logic (LTL) 
are defined inductively as follows: 
 

• Propositions Every proposition π  is a formula. 
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• Formulas If 1 2andφ φ  are formulas, then the following are also formulas: 
 

1 2 1 1 1 2φ φ φ φ φ φ∨ ¬ ○ U  
 
The formulas of LTL are interpreted over infinite sequences of sets of propositions. 
Consider a word 0 1 2...w = Π Π Π , where each iΠ  is a set of propositions. The 
satisfaction of a proposition π  at position i∈`  of word w is denoted by ( , ) Lw i πB  
(which should not be confused with the satisfaction relation B  which tells us 
whether a state satisfies a proposition), and holds iff iπ∈Π . We can then 
recursively define the semantics for any LTL formula as follows: 
 

• 1 2( , ) Lw i φ φ∨B  if either 1( , ) Lw i φB  or 2( , ) Lw i φB  
 
• 1( , ) Lw i φ¬B  if 1( , ) Lw i φH  
 
• 1( , ) Lw i φ○B  if 1( , 1)w i φ+ B  
 
• 1 2( , ) Lw i φ φB U  if there is a j i≥  such that 2( , ) Lw j φB  and for all i k j≤ < , 

we have 1( , ) Lw k φB  
 
A word w satisfies an LTL formula φ  if ( ,0) Lw φB . From and¬ ∨ , which stand for 
negation and disjunction, respectively, we can also define conjunction ∧ , implication 
⇒ , and equivalence ⇔ . The temporal operators ○ and U  are called the next and until 
operators. The 1φ○  formula holds for a word 0 1 2...Π Π Π  iff the sub-formula 1φ  is true 
for the suffix 1 2...Π Π  The formula 1 2φ φU  intuitively expresses the property that 1φ  is 
true until 2φ  becomes true. Using the next and until operators, we can also define the 
following temporal operators in LTL: 
 

• Eventually: trueφ φ= U◊  
 
• Always: φ φ= ¬ ¬, ◊        
 

Therefore, φ◊  indicates that φ  becomes eventually true, whereas φ,  indicates that φ  
is true at all positions of a word. The LTL formula φ,◊  is true for words that satisfy φ  
infinitely often, whereas a word satisfies φ,◊  if φ  becomes eventually true and then 
stays true forever. 
 
A transition system T satisfies an LTL formula φ  if all words in the language L(T) 
satisfy φ . For example, if π  is a proposition encoding an unsafe region, then safety can 
be simply expressed as ¬π, , or equivalently, as ¬ π◊ . The more elaborate requirement 
that visiting region 1πc fe h  will eventually be followed by visiting region 2πc fe h , is 
expressed by the formula 1 2( )π ⇒ π, ◊ . 
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Problem 2.5 (LTL Model Checking Problem) Given a transition system T and an LTL 
formula φ , determine if T satisfies φ . 
 
Since reachability can be expressed by an LTL formula of the form π◊ , it is immediate 
that Problem 2.2 is contained in Problem 2.5. Given the definition of language 
equivalence, the following theorem should come as no surprise. 
 
Theorem 2.6 (Language equivalences preserve LTL properties) Let T be a transition 
system and let L∼  be a language equivalence of T. Then T satisfies the LTL formula φ  
iff the language equivalence quotient LT ∼  satisfies φ . 
 
Therefore, given a transition system T and an LTL formula φ , we can equivalently 
perform the model checking problem on LT ∼ . In general, language equivalence 
quotients are not finite. If, however, we are given a finite language equivalence quotient 
of a transition system T, then using the above theorem, LTL model checking can be 
decided for T. 
 
2.2. Bisimulation Partitions 
 
We now define a different way of partitioning the state space which has computational 
advantages over language equivalence. 
 
Definition 2.7 (Bisimulation) Let 0( , , , , )T Q Q= Π → B  be a transition system. A 
proposition-preserving equivalence relation B∼ on Q is a bisimulation of T if for all 
states ,p q Q∈ , if Bp q∼ , then for all states p Q′∈ , if p p′→ , then there exists a 
state q Q′∈  such that q q′→  and Bp q′ ′∼ . 
 
If B∼  is a bisimulation, then the quotient transition system BT ∼  are called a 
bisimulation quotient of T. The crucial property of bisimulations is that for every 
equivalence class BP Q∈ ∼ , the predecessor region Pre(P)  is a union of equivalence 
classes. Therefore, if 1 2, BP P Q∈ ∼ , then 2)1Pre(P P∩  is either the empty set or all of 

2P . It is not difficult to check that every bisimulation is a language equivalence, but a 
language equivalence is not necessarily a bisimulation. Therefore, LTL model checking 
for T can be performed equivalently on BT ∼ . 
 
Theorem 2.8 (Bisimulation preserves LTL properties) Let T be a transition system 
and let B∼  be a bisimulation of T. Then T satisfies the LTL formula φ  iff the 
bisimulation quotient BT ∼  satisfies φ . 
 
Even though we focus on LTL properties in this chapter, it should be noted that 
bisimulations also preserve properties expressed in more expressive logics such as 
CTL∗  and μ-calculus. But even for LTL properties, bisimulation partitions are easier to 
compute than language equivalence quotients. In particular, for finite T, computing 
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BT ∼  can be performed in polynomial time, while computing LT ∼  is PSPACE-
complete. Bisimulations can be computed using the following algorithm. If the 
algorithm terminates within a finite number of iterations of the loop, then there is a 
finite bisimulation quotient, and the algorithm returns a finite partition of the state space 
which is the coarsest bisimulation (i.e., the bisimulation with the fewest equivalence 
classes). 
 
Algorithm 2 (Bisimulation Algorithm) 
 
initially a b: { }BQ = π π∈Π∼ ⏐ ; 
 
while there exist , BP P Q′∈ ∼ such that 0 PreP (P ) P′∩⊊ ⊊  do 
 
 1 : Pre \ Pre2P P (P );P P (P )′ ′= =∩ ; 
 
 1 2: ( { }) { , }\B BQ Q P P P=∼ ∼ ∪  
 
end while; 
 
return BQ ∼  

Therefore, in order to show that LTL model checking can be decided for a transition 
system T, it suffices to show that the bisimulation algorithm terminates on T, and that 
each step of the algorithm is computable or effective. This means that we must be able to 
represent (possibly infinite) state sets symbolically, perform Boolean operations, check 
emptiness, and compute the predecessor operation Pre on the symbolic representation of 
state sets. 
 
- 
- 
- 
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