
UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Bisimulations Of Discrete, Continuous, and Hybrid
Systems - George J. Pappas

©Encyclopedia of Life Support Systems (EOLSS)

BISIMULATIONS OF DISCRETE, CONTINUOUS AND HYBRID
SYSTEMS

George J. Pappas
University of Pennsylvania, Philadelphia, PA 19102. USA.

Keywords: Transition systems, linear temporal logic, verification, reachability, model
checking, language equivalence, bisimulation, hybrid systems, decidability

Contents

1. Introduction
2. Bisimulations of transition systems
2.1. Language Equivalence and Linear Temporal Logic
2.2. Bisimulation Partitions
3. Bisimulations of continuous systems
3.1. Proposition Preserving Partitions
3.2. Quotient Construction
3.3. Bisimulation Characterization and Algorithm
4. Bisimulation of hybrid systems
4.1. Transition Systems of Hybrid Systems
4.2. Rectangular, Multirate, and Timed Automata
4.3. Bisimulations of Timed and Multirate Automata
4.4. O-minimal Hybrid Systems
5. Conclusions
Acknowledgements
Glossary
Bibliography
Biographical Sketch

Summary

Hybrid systems unify discrete-event and continuous-time dynamics in a manner that
enables the modeling of software control or embedded systems. The complexity of
hybrid systems naturally requires the use of algorithmic approaches for analysis and
design. For analysis and design purposes, it is often useful to abstract a system in a way
that preserves the desired properties while hiding modeling details that are of no
interest. This is achieved using state space partitions, such as bisimulations, that
preserve reachability properties as well as a finite set of propositions. In this chapter, we
survey notions of bisimulations for discrete, continuous, and hybrid systems. We show
that interesting classes of hybrid systems can be abstracted to purely discrete systems
while preserving all properties that are definable in linear temporal logic.

1. Introduction

Hybrid systems combine both digital and analog components, in a way that is useful for
the analysis and design of embedded control systems. Hybrid systems have been used as
mathematical models for many applications such as automated highway systems, air

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Bisimulations Of Discrete, Continuous, and Hybrid
Systems - George J. Pappas

©Encyclopedia of Life Support Systems (EOLSS)

traffic management systems, embedded automotive controllers, and chemical processes.
Their wide applicability has inspired research from both control theory and theoretical
computer science.

The complexity of hybrid system models requires the development of a formal theory of
modeling abstractions. In the literature, the notions of abstraction or aggregation refer
to grouping the system states into equivalence classes. Depending on the grouping of
the original state space, we may have discrete, or continuous abstractions. With this
notion of abstraction, the abstracted system will be defined as the induced quotient
dynamics. Theoretical computer science, and, in particular, the areas of concurrency
theory, and computer aided verification have established formal notions of abstraction
and model refinement which are used to tackle the state explosion arising in purely
discrete systems. Given a discrete system, an abstraction is a quotient system that
preserves some properties of interest while ignoring detail. Properties of interest include
reachability, safety, liveness, and other properties expressible in various temporal
logics.

The notion of bisimulation is one such formal notion of abstraction that has been used
for reducing the complexity of finite state systems such as labeled transition systems.
Bisimulations are partitions of the state space that preserve observations and
reachability properties. In addition to reachability, bisimulations of finite transition
systems preserve all properties that are expressible in temporal logics such as linear
temporal logic (LTL). The notion of bisimulation has been also instrumental in
obtaining decidability results for various classes of hybrid systems, by considering finite
bisimulations of hybrid systems. In the control community, notions that are similar to
bisimulation have been considered in the hierarchical, supervisory control of discrete
event systems, and hybrid systems (see survey). Furthermore, bisimulations have also
been used as a controller synthesis tool for discrete-event systems.

In this chapter, we survey the notion of bisimulation in the context of purely discrete,
purely continuous, and, eventually, hybrid systems. We first review the well established
notion of bisimulation for transition systems along with linear temporal logic, a popular
logic for specifying properties of transitions systems. We then apply the framework of
bisimilar transition systems to transition systems that are generated by linear control
systems. Given a continuous-time linear system, and a finite number of propositions, we
characterize linear quotient maps that result in quotient transition systems that are
bisimilar to the original system. We show that computing the coarsest bisimulation,
which results in maximum complexity reduction, corresponds to computing the
maximal reachability invariant subspace inside a subspace which is related with the
propositions.

We then focus on finite bisimulations of hybrid systems. Given a hybrid system and
some desired property, one extracts a finite, discrete system while preserving all
properties of interest. This is achieved by constructing suitable, finite and computable
partitions of the state space of the hybrid system. By obtaining discrete abstractions
which are finite, and preserve properties of interest, analysis can be equivalently
performed on the finite system, which requires only a finite number of steps. Checking
the desired property on the abstracted system should be either equivalent to or sufficient

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Bisimulations Of Discrete, Continuous, and Hybrid
Systems - George J. Pappas

©Encyclopedia of Life Support Systems (EOLSS)

for checking the property on the original system. In this chapter, we focus on equivalent
discrete abstractions of hybrid systems along with some properties they preserve. We
show that there are many interesting classes of hybrid systems which can be abstracted
by finite systems for analysis purposes.

2. Bisimulations of Transition Systems

Transition systems are graph models, possibly with an infinite number of states or
transitions.
Definition 2.1 (Transition Systems) A transition system 0(, , , ,)T Q Q= Π → B consists
of:

• A (possibly infinite) set Q of states,
• A finite alphabet Π of propositions,
• A transition relation Q Q→⊆ × , and
• A satisfaction relation Q⊆ ×ΠB , and
• A set 0Q Q⊆ of initial states.

A state 1q is predecessor of a state 2q , and 2q is a successor of 1q , written 1 2q q→ , if
the transition relation→contains the pair 1 2(,)q q . A state q satisfies a proposition π ,
written q πB , if the satisfaction relation B contains the pair (,)q π . Given a proposition
π∈Π , we write a b { }q Q qπ = ∈ = π for the set of states that satisfy π .

The transition system T is finite if the cardinality of Q is finite, and it is infinite
otherwise. A region is a subset P Q⊆ of the states. The sets of predecessor and
successor states of P respectively are

Pre() { . }P q Q p P q p= ∈ ∃ ∈ →⏐ (1)

Post() { . }P q Q p P p q= ∈ ∃ ∈ →⏐ (2)

The set of states that are accessible from P in two transitions is Post(Post(P)), and is
denoted 2Post ()P . In general, Post ()i P consists of the states that are accessible from P

in i transitions. Pre ()i P is defined similarly. Then

Pre () Pre ()i

i
P P∗

∈
= ∪̀ (3)

Post () Post ()i

i
P P∗

∈
= ∪̀ (4)

are the set of states that are backward and forward reachable from P, that is, accessible
in any number of transitions. In particular, 0Post ()Q∗ is the set of reachable states of
the transition system T, and is denoted by Reach()T . A problem that is of great interest

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Bisimulations Of Discrete, Continuous, and Hybrid
Systems - George J. Pappas

©Encyclopedia of Life Support Systems (EOLSS)

for transition systems is the reachability problem.

Problem 2.2 (Reachability Problem) Given a transition system 0(, , , ,)T Q Q= Π → B
and a proposition π∈Π , is Reach a b() 0T π ≠∩ ?

If the proposition π encodes an undesirable or unsafe region of the state space, then
solving reachability corresponds to checking if the system is safe. In this chapter, we are
interested in computational approaches to the solution of the reachability problem. The
following algorithm computes the reachable space until either a state satisfying π is
reached, or no more reachable states can be added.

Algorithm 1 (Forward Reachability Algorithm)

initially 0:R Q= ;

while true do

 if a b 0R π ≠∩ then return “unsafe” end if;

 if Post()R R⊆ then return “safe” end if;

 : Post()R R R= ∪

end while

A backward reachability algorithm which starts with a bπ and checks whether

a b 0Pre () 0Q∗ π ≠∩ can be similarly constructed. Such iterative algorithmic approaches
to checking system properties are guaranteed to terminate if the state space of the
transition system is finite. If the state space is infinite, then there is, in general, no
guarantee that the forward reachability algorithm will terminate within a finite number
of iterations of the loop. It could continue adding states forever without ever reaching
the target region a bπ or reaching a fixed point R such that Post()R R⊆ . A practically
useful goal is to find classes of infinite transition systems whose analysis can be
performed on equivalent but finite transition systems. This is accomplished by
constructing suitable finite quotients of the original system which partition the state
space in a manner that preserves the properties of interest while omitting modeling
detail.

In addition to reachability, the desired system specification may require more detailed
system properties. For example, one may wish to encode the requirement that a system
failure is eventually followed by a return to the normal mode of operation. More
abstractly, if the transition system visits a region 1P , encoding a failure, then eventually
it will reach a region 2P , encoding normal operation. Such properties can be encoded as
formulas in temporal logic. Formulas of temporal logic are thus used to formally specify

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Bisimulations Of Discrete, Continuous, and Hybrid
Systems - George J. Pappas

©Encyclopedia of Life Support Systems (EOLSS)

properties of systems, such as reachability, invariance, or response properties. In the
sequel, after defining the notion of quotient transition systems, two kinds of equivalence
relations, language equivalences and bisimulations, are considered along with the
popular temporal logic Linear Temporal Logic (LTL) whose properties they preserve.

An equivalence relation Q Q⊆ ×∼ on the state space is proposition preserving if for all
states ,p q Q∈ and all propositions π∈Π , if p q∼ and p πB , then q πB ; that is, the
region a bπ is a union of equivalence classes. Given a proposition-preserving
equivalence relation∼ , the definition of quotient transition system T ∼ is natural. Let
Q ∼ denote the quotient space, that is, the set of equivalence classes. For a region P,
we denote by P ∼ the collection of all equivalence classes which intersect P. The
transition relation →∼ on the quotient space is defined as follows: for 1 2,P P Q∈ ∼ , we
have 1 2P P→∼ if and only if (iff) there exist two states 1 1q P∈ and 2 2q P∈ such that

1 2q q→ . The satisfaction relation ∼B on the quotient space is defined as follows: for
P Q∈ ∼ , we have P π∼B iff there exists a state q P∈ such that q πB . The quotient
transition system is then 0(, , , ,)T Q Q= Π →∼ ∼∼ ∼ ∼B� .

2.1. Language Equivalence and Linear Temporal Logic

Let q Q∈ be a state of the transition system 0(, , , ,)T Q Q= Π → B . Given a state q Q∈ ,
let { }q qΠ = π∈Π πB⏐ be the set of propositions that are satisfied by q. A trajectory

generated from q is an infinite sequence 0 1 2...q q q such that 0q q= and for all i∈` , we
have 1i iq q +→ . This trajectory defines the word 0 1 2...q q qΠ Π Π The set of words that
are defined by trajectories generated from q is denoted by L(q), and called the language
of the state q. The set

0
()q Q L q

∈∪ of words that are defined by trajectories generated

from initial stats is denoted by ()L T , and called the language of the transition system T.

Definition 2.3 (Language Equivalences) Let T be a transition system with state space
Q. An equivalence relation L∼ on Q is a language equivalence of T if for all states

,p q Q∈ , if Lp q∼ , then () ()L p L q= .

Note the every language equivalence is proposition preserving. Every language
equivalence L∼ partitions the state space and gives rise to the quotient transition system

LT ∼ , which is called a language equivalence quotient of T. The formulas of Linear
Temporal Logic (LTL) are interpreted over words, and hence the properties expressed in
LTL are preserved by language equivalence quotients.

Definition 2.4 (Linear Temporal Logic) The formulas of Linear Temporal Logic (LTL)
are defined inductively as follows:

• Propositions Every proposition π is a formula.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Bisimulations Of Discrete, Continuous, and Hybrid
Systems - George J. Pappas

©Encyclopedia of Life Support Systems (EOLSS)

• Formulas If 1 2andφ φ are formulas, then the following are also formulas:

1 2 1 1 1 2φ φ φ φ φ φ∨ ¬ ○ U

The formulas of LTL are interpreted over infinite sequences of sets of propositions.
Consider a word 0 1 2...w = Π Π Π , where each iΠ is a set of propositions. The
satisfaction of a proposition π at position i∈` of word w is denoted by (,) Lw i πB
(which should not be confused with the satisfaction relation B which tells us
whether a state satisfies a proposition), and holds iff iπ∈Π . We can then
recursively define the semantics for any LTL formula as follows:

• 1 2(,) Lw i φ φ∨B if either 1(,) Lw i φB or 2(,) Lw i φB

• 1(,) Lw i φ¬B if 1(,) Lw i φH

• 1(,) Lw i φ○B if 1(, 1)w i φ+ B

• 1 2(,) Lw i φ φB U if there is a j i≥ such that 2(,) Lw j φB and for all i k j≤ < ,

we have 1(,) Lw k φB

A word w satisfies an LTL formula φ if (,0) Lw φB . From and¬ ∨ , which stand for
negation and disjunction, respectively, we can also define conjunction ∧ , implication
⇒ , and equivalence ⇔ . The temporal operators ○ and U are called the next and until
operators. The 1φ○ formula holds for a word 0 1 2...Π Π Π iff the sub-formula 1φ is true
for the suffix 1 2...Π Π The formula 1 2φ φU intuitively expresses the property that 1φ is
true until 2φ becomes true. Using the next and until operators, we can also define the
following temporal operators in LTL:

• Eventually: trueφ φ= U◊

• Always: φ φ= ¬ ¬, ◊

Therefore, φ◊ indicates that φ becomes eventually true, whereas φ, indicates that φ
is true at all positions of a word. The LTL formula φ,◊ is true for words that satisfy φ
infinitely often, whereas a word satisfies φ,◊ if φ becomes eventually true and then
stays true forever.

A transition system T satisfies an LTL formula φ if all words in the language L(T)
satisfy φ . For example, if π is a proposition encoding an unsafe region, then safety can
be simply expressed as ¬π, , or equivalently, as ¬ π◊ . The more elaborate requirement
that visiting region 1πc fe h will eventually be followed by visiting region 2πc fe h , is
expressed by the formula 1 2()π ⇒ π, ◊ .

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Bisimulations Of Discrete, Continuous, and Hybrid
Systems - George J. Pappas

©Encyclopedia of Life Support Systems (EOLSS)

Problem 2.5 (LTL Model Checking Problem) Given a transition system T and an LTL
formula φ , determine if T satisfies φ .

Since reachability can be expressed by an LTL formula of the form π◊ , it is immediate
that Problem 2.2 is contained in Problem 2.5. Given the definition of language
equivalence, the following theorem should come as no surprise.

Theorem 2.6 (Language equivalences preserve LTL properties) Let T be a transition
system and let L∼ be a language equivalence of T. Then T satisfies the LTL formula φ
iff the language equivalence quotient LT ∼ satisfies φ .

Therefore, given a transition system T and an LTL formula φ , we can equivalently
perform the model checking problem on LT ∼ . In general, language equivalence
quotients are not finite. If, however, we are given a finite language equivalence quotient
of a transition system T, then using the above theorem, LTL model checking can be
decided for T.

2.2. Bisimulation Partitions

We now define a different way of partitioning the state space which has computational
advantages over language equivalence.

Definition 2.7 (Bisimulation) Let 0(, , , ,)T Q Q= Π → B be a transition system. A
proposition-preserving equivalence relation B∼ on Q is a bisimulation of T if for all
states ,p q Q∈ , if Bp q∼ , then for all states p Q′∈ , if p p′→ , then there exists a
state q Q′∈ such that q q′→ and Bp q′ ′∼ .

If B∼ is a bisimulation, then the quotient transition system BT ∼ are called a
bisimulation quotient of T. The crucial property of bisimulations is that for every
equivalence class BP Q∈ ∼ , the predecessor region Pre(P) is a union of equivalence
classes. Therefore, if 1 2, BP P Q∈ ∼ , then 2)1Pre(P P∩ is either the empty set or all of

2P . It is not difficult to check that every bisimulation is a language equivalence, but a
language equivalence is not necessarily a bisimulation. Therefore, LTL model checking
for T can be performed equivalently on BT ∼ .

Theorem 2.8 (Bisimulation preserves LTL properties) Let T be a transition system
and let B∼ be a bisimulation of T. Then T satisfies the LTL formula φ iff the
bisimulation quotient BT ∼ satisfies φ .

Even though we focus on LTL properties in this chapter, it should be noted that
bisimulations also preserve properties expressed in more expressive logics such as
CTL∗ and μ-calculus. But even for LTL properties, bisimulation partitions are easier to
compute than language equivalence quotients. In particular, for finite T, computing

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Bisimulations Of Discrete, Continuous, and Hybrid
Systems - George J. Pappas

©Encyclopedia of Life Support Systems (EOLSS)

BT ∼ can be performed in polynomial time, while computing LT ∼ is PSPACE-
complete. Bisimulations can be computed using the following algorithm. If the
algorithm terminates within a finite number of iterations of the loop, then there is a
finite bisimulation quotient, and the algorithm returns a finite partition of the state space
which is the coarsest bisimulation (i.e., the bisimulation with the fewest equivalence
classes).

Algorithm 2 (Bisimulation Algorithm)

initially a b: { }BQ = π π∈Π∼ ⏐ ;

while there exist , BP P Q′∈ ∼ such that 0 PreP (P) P′∩⊊ ⊊ do

 1 : Pre \ Pre2P P (P);P P (P)′ ′= =∩ ;

 1 2: ({ }) { , }\B BQ Q P P P=∼ ∼ ∪

end while;

return BQ ∼

Therefore, in order to show that LTL model checking can be decided for a transition
system T, it suffices to show that the bisimulation algorithm terminates on T, and that
each step of the algorithm is computable or effective. This means that we must be able to
represent (possibly infinite) state sets symbolically, perform Boolean operations, check
emptiness, and compute the predecessor operation Pre on the symbolic representation of
state sets.

-
-
-

TO ACCESS ALL THE 25 PAGES OF THIS CHAPTER,

Click here

Bibliography

Alur R., Courcoubetis C., Halbwachs N., Henzinger T., Ho P.H., Nicollin X., Olivero A., Sifakis J.,
Yovine S. (1995). The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3-34.

Alur R., Dill D. (1994). A theory of timed automata. Theoretical Computer Science 126, 183-235.

Alur R., Henzinger T., Lafferriere G., Pappas G. (2000). Discrete abstractions of hybrid systems.
Proceedings of the IEEE 88(7), 971-984.

Balluchi A., Benvenuti L., DiBenedetto M., Pinello C., Sangiovanni-Vincentelli A. (2000). Automotive
engine control and hybrid systems : Challenges and opportunities. Proceedings of the IEEE 88(7), 888-

http://www.eolss.net/Eolss-sampleAllChapter.aspx
https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-43-28-04

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Bisimulations Of Discrete, Continuous, and Hybrid
Systems - George J. Pappas

©Encyclopedia of Life Support Systems (EOLSS)

912.

Caines P., Wei Y. (1995). The hierarchical lattices of a finite state machine. Systems and Control Letters
25, 257-263.

Cerans K., Viksna J. (1996). Deciding reachability for planar multi-polynomial systems. In R. Alur, T.
Henzinger, E. Sontag, eds., Hybrid Systems III, vol. 1066 of Lecture Notes in Computer Science, pp. 389-
400, Berlin, Germany: Springer Verlag.

Daws C., Olivero A., Tripakis S., Yovine S. (1996). The tool KRONOS. In Hybrid Systems III, vol. 1066
of Lecture Notes in Computer Science, pp. 208-219, Springer-Verlag.

Engell S., Kowalewski S., Schulz C., Stursberg O. (2002). Simulation, analysis and optimization of
continuous-discrete interactions in chemical processing plants. Proceedings of the IEEE 88(7), 1050-
1068.

Henzinger T., Kopke P., Puri A., Varaiya P. (1998). What’s decidable about hybrid automata? Journal of
Computer and System Sciences 57, 94-124.

Koutsoukos X., Antsaklis P., J.Stiver, Lemmon M. (2000). Supervisory control of hybrid systems.
Proceedings of the IEEE 88(7), 1026-1049.

Lafferriere G., Pappas G., Sastry S. (1998a). Subanalytic stratifications and bisimulations. In T.
Henzinger, S. Sastry, eds., Hybrid Systems : Computation and Control, vol. 1386 of Lecture Notes in
Computer Science, pp. 205-220, Berlin: Springer Verlag.

Lafferriere G., Pappas G.J., Sastry S. (1998b). Hybrid systems with finite bisimulations. In P. Antsaklis,
W. Kohn, M. Lemmon, A. Nerode, S. Sastry, eds., Hybrid Systems V, Lecture Notes in Computer
Science, New York: Springer Verlag.

Lafferriere G., Pappas G.J., Sastry S. (2000). O-minimal hybrid systems. Mathematics of Control,
Signals, and Systems 13(1), 1-21.

Lafferriere G., Pappas G.J., Yovine S. (1999a). A new class of decidable hybrid systems. In Hybrid
Systems : Computation and Control, vol. 1569 of Lecture Notes in Computer Science, pp. 137-151,
Springer Verlag.

Lafferriere G., Pappas G.J., Yovine S. (1999b). reachability computation for linear hybrid systems. In
Proceedings of the 14th IFAC World Congress, vol. E, pp. 7-12, Beijing, P.R. China.

Livadas C., Lygeros J., Lynch N. (2000). High-level modeling and analysis of tcas. Proceedings of the
IEEE 88(7), 926-948.

Lygeros J., Godbole D., Sastry S. (1998). Verified hybrid controllers for automated vehicles. IEEE
Transactions on Automatic Control 43(4), 522-539.

Milner R. (1989). Communication and Concurrency. Prentice Hall.

Pnueli A. (1977). The temporal logic of programs. In I.C.S. Press, ed., Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pp. 46-57.

Tarski A. (1951). A decision method for elementary algebra and geometry. University of California Press,
second edn.

Tomlin C., Pappas G.J., Sastry S. (1998). Conflict resolution for air traffic management : A study in muti-
agent hybrid systems. IEEE Transactions on Automatic Control 43(4), 509-521.

Van den Dries L. (1998). Tame Topology and o-minimal structures. Cambridge University Press.

Varaiya P. (1993). Smart cars on smart roads: problems of control. IEEE Transactions on Automatic
Control 38(2), 195-207.

Wong K., Wonham W. (1995). Hierarchical control of discrete-event systems. Discrete Event Dynamic
Systems 6, 241-273.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Bisimulations Of Discrete, Continuous, and Hybrid
Systems - George J. Pappas

©Encyclopedia of Life Support Systems (EOLSS)

Biographical Sketch

George J. Pappas received the B.S. degree in Computer and Systems Engineering in 1991, the M.S.
degree in Computer and Systems Engineering in 1992, both from Rensselaer Polytechnic Institute, Troy,
NY. In 1994, he was a Graduate Fellow at the Division of Engineering Science of Harvard University. In
December 1998, he received the Ph.D degree from the Department of Electrical Engineering and
Computer Sciences at the University of California at Berkeley. He was a postdoctoral researcher at the
University of California at Berkeley and the University of Pennsylvania. His is currently an Assistant
Professor and Graduate Group Chair in the Department of Electrical Engineering at the University of
Pennsylvania, where he also holds a secondary appointment in the Department of Computer and
Information Sciences.

George Pappas is the recipient the NSF CAREER award in 2002, and the 1999 Eliahu Jury Award for
Excellence in Systems Research from the Department of Electrical Engineering and Computer Sciences at
the University of California at Berkeley. He was also a finalist for the Best Student Paper Award at the
1998 IEEE Conference on Decision and Control.

His research interests include hierarchical control systems, embedded hybrid systems, distributed control
systems, nonlinear control systems, geometric control theory, with applications to flight management
systems, robotics, and unmanned aerial vehicles.

