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Summary 
 
The International Thermodynamic Equation of Seawater 2010, TEOS-10, is the latest 
oceanographic standard formulation for the thermodynamic properties of Standard 
Seawater as specified and distributed by IAPSO, the International Association for the 
Physical Sciences of the Oceans. In this chapter it is briefly outlined how TEOS-10 
describes seawater and its equilibria with liquid water, ice, water vapor and humid air. 
The scales are explained on which temperature and salinity are expressed within TEOS-
10, as well as the reference state conditions used to specify the absolute values of 
energy and entropy of water, sea salt, and dry air. In the end, selected seawater 
properties derived from TEOS-10 are displayed graphically. 
 
1. Introduction 
 
Water is the very key substance for our biological existence as individuals, for our 
private daily life cycle, for the processes in agriculture and industry, as well as in our 
environment and in the climate system with oceans, rivers, humid air and clouds. As a 
pure substance under ambient conditions, water occurs in three thermodynamic phases, 
as gaseous water vapor, as liquid water, and as solid ice with a hexagonal crystal lattice, 
termed ice Ih. In the atmosphere, water vapor is mixed with several gases jointly 
referred to as “dry air”. In the oceans, several salts are dissolved in water, forming a 
mixture known as “sea salt”. Water is also present as moisture in soil and rocks, and is 
taken up, stored and released by plants and animals. Ranking second behind radiation 
energy, the latent heat transferred by water between ocean and atmosphere, released in 
clouds or consumed by melting glaciers is controlling climate and weather dynamics. 
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Satellites, radiosondes, meteorological stations, research vessels (Figure 1) and 
automatic buoys are used to provide observational data for pressure, temperature, 
humidity and salinity of the atmosphere, the hydrosphere and the cryosphere at certain 
points in space and time. The measuring instruments are calibrated with respect to 
international metrological standards to ensure temporal and spatial comparability of the 
various measurement results. Those metrological standards are gradually improving 
with respect to their uncertainty, consistency and stability. If (and only if) common 
calibration standards are used for field measurements and in the laboratory, the results 
of precision experiments to determine, say, the density of humid air or the heat capacity 
of seawater, can be used for the computation of related thermodynamic properties for 
the real atmosphere and ocean from temperature, humidity and salinity readings. For 
this purpose, equations of state for the particular substances are developed from 
laboratory data, and later evaluated frequently with field data taken as input parameters. 
It is obvious that those computed properties, such as the local density of the ocean or the 
dewpoint of air, are comparable for different times (over centuries) and locations (on the 
global scale) only if consistent equations and measuring standards are employed. In the 
Sections 2 and 3, the metrological background of temperature and salinity 
measurements is briefly addressed. With its focus on seawater, this chapter describes the 
current state of the art regarding those equations available for geosciences and 
climatology. The recent oceanographic formulation TEOS-10 (IOC et al., 2010), the 
Thermodynamic Equation of Seawater 2010, offers significant progress towards an 
internationally recognized general standard on thermodynamic properties of geophysical 
fluids even though various problems are still challenging (WMO, 2010), see Section 8.  
 
Because of permanent intense exchange of energy and matter between atmosphere, 
hydrosphere and cryosphere, a comprehensive, consistent description of seawater 
thermodynamics must include the colligative properties of the phase transitions such as 
freezing point and melting heat, or vapor pressure and latent heat of evaporation in the 
presence of air and sea salt. For this reason, the TEOS-10 equation of state for seawater, 
Section 5, is accompanied by related equations for ice and humid air. The substances 
involved are pure water (in its three phases, as specified in Sections 5 and 6), sea salt 
(Section 5) and dry air (Section 7), in conjunction with the scales used to measure in 
practice the composition of the particular mixture.  
 
Traditionally, thermodynamic properties of seawater, ice and humid air are described by 
collections of separate correlation equations for a number of relevant properties, such as 
functions providing values for the density, the heat capacity or the sound speed (Gill, 
1982; Fofonoff and Millard, 1983; Siedler and Peters, 1986; Mamayev et al., 1991; 
Petrenko and Whitworth, 1999; Millero, 2001; Jacobson, 2005; Murphy and Koop, 
2005; Sharqawya et al., 2010; Feistel et al., 2010a). Such collections are usually 
incomplete, their mutual consistency is uncertain, ranges of validity and uncertainty are 
often insufficiently known, thermodynamic reference states are rarely specified, and 
temperature scales may be obsolete or not even reported. The history of equations of 
state for seawater is reviewed by Millero (2010). 
 



OCEANOGRAPHY – Thermodynamic Properties of Seawater – Rainer Feistel 

©Encyclopedia of Life Support Systems (EOLSS) 

 
Figure 1. Conductivity-Temperature-Depth bathysonde (CTD) lowered into the Baltic 

Sea for reading the local vertical profile of seawater properties. Photo taken on 25 
March 2010 onboard of r/v “Prof. A. Penck”. 

 
To overcome most of those problems, TEOS-10 is basically composed of four 
independent but mutually consistent thermodynamic potentials, as shown schematically 
in Figure 2, for (i) fluid water, (ii) ice Ih, (iii) sea salt dissolved in liquid water, and (iv) 
dry air mixed with water vapor.  
 
A thermodynamic potential, also termed fundamental equation of state, is a single 
function from which all the equilibrium properties of a given thermodynamic system 
can consistently be computed, with the exception of interface properties such as surface 
tension. Transport properties such as electric or thermal conduction do not belong to the 
thermodynamic properties. The existence of thermodynamic potentials was discovered 
already by Gibbs (1873); methods of their practical use are reviewed by Tillner-Roth 
(1998) and Alberty (2001). For seawater, Fofonoff (1962) discussed the mathematical 
relations between the potential function and measurable oceanographic properties, but 
later this theoretical option was mentioned only exceptionally in textbooks or university 
courses on oceanography. For practical use, the first potential function of seawater was 
quantitatively determined by Feistel (1993), constructed consistently with the previous 
1980 International Equation of State of Seawater, EOS-80. 
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Figure 2. Schematic of the building-block structure of TEOS-10. Its Primary Standard 
(top row) consists of four independent and consistent thermodynamic potentials, 

formulated as documents of the International Association for the Properties of Water 
and Steam (IAPWS). From those equations, all the thermodynamic properties of liquid 

water, water vapor, ice, seawater and humid air, their mutual phase equilibria and 
composites can be computed by purely mathematical procedures without additional 

empirical constants or formulas. 
 
For different sets of requisite independent variables, suitable alternative thermodynamic 
potentials can be chosen. They are physically and mathematically equivalent, the choice 
between them depends on purpose and convenience. Most frequently used are Gibbs 
functions, g , depending on temperature and pressure, and Helmholtz functions, f , 
depending on temperature and density, see Figure 2. Another important potential 
function is enthalpy, h , expressed in terms of entropy and pressure (Feistel and Hagen, 
1995). Gibbs functions are most convenient because temperature and pressure are 
directly measurable input parameters; a technical drawback of Gibbs functions is that 
they are multi-valued in the vicinity of phase transitions (Kittel, 1969). Helmholtz 
functions are unique even in the vicinity of a critical point and are therefore preferred 
for fluids such as water if a wide range of conditions is to be covered. Moreover, 
Helmholtz functions are strictly additive for mixtures of ideal gases. In contrast, 
enthalpy is a very convenient function for the description of adiabatic processes; 
thermal isolation of a given fluid parcel is often observed in good approximation in 
oceanography and meteorology. For this purpose, potential temperature or conservative 
temperature may be used as independent thermal variable rather than in-situ temperature 
(IOC et al., 2010).  
 
For the practical computation of properties from the thermodynamic potentials, the 
Seawater-Ice-Air (SIA) Library of TEOS-10 is organized in Levels 0-5, see Figure 2. 
Level 0 contains supplementary physical constants and auxiliary mathematical 
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procedures. The IAPWS formulations of the thermodynamic potentials (IAPWS 2008, 
2009a, 2009b, 2010a) form the library Level 1, termed the Primary Standard of TEOS-
10. They obey the axiomatic principles of consistency, independence and completeness 
(Feistel et al., 2008a). Consistency means that it is impossible to derive different 
formulas for one and the same property. Independence expresses the fact that it is 
impossible to derive the same formula from two different parts of the formulation. 
Finally, completeness indicates that all the thermodynamic properties of the pure 
phases, their mixtures and composites can be computed from the Primary Standard by 
purely mathematical or numerical manipulations. Reference states used to 
unambiguously specify the thermodynamic potentials are explained in Section 4. Thus, 
Level 1 contains the entire set of empirical coefficients which in a compact form 
express the quantitative knowledge gained from numerous laboratory experiments; 
updating Level 1 in part or as a whole will automatically update all other computed 
properties except those available from Level 5 and from the Gibbs Seawater (GSW) 
Library of TEOS-10.  
 
Level 2 provides properties of pure phases and mixtures directly available from Level 1 
functions by partial derivatives and algebraic combinations. At Level 3, alternative 
independent variables are introduced by means of numerical iteration procedures to 
invert the algebraic equations. At Level 4, properties of phase equilibria and composite 
systems are derived from Levels 1-3. Finally, Level 5 contains additional correlation 
functions determined by regression with respect to data points computed from Levels 1-
4. Level 5 functions are usually optimized for computation speed at the cost of accuracy 
or range of validity. A detailed overview over the thermodynamic properties available 
and the algorithms used at the different levels is given by Feistel et al. (2009a), Wright 
et al. (2009a), and McDougall and Barker (2011). 
 
The latest version of the TEOS-10 Manual, the latest library implementation and the 
most relevant background papers are freely available from the website www.teos-10.org  
 
The four IAPWS formulations, see Figure 2, are freely available from the website 
www.iapws.org. The explicit mathematical expressions and the sets of empirical 
coefficients of the thermodynamic potentials are available from the documents provided 
on those web sites; in this chapter we refrain from presenting the numerical details. 
 
2. Temperature Scale 
 
Definition and measurement of temperature is a scientifically and metrologically 
demanding task. On the currently valid International Temperature Scale of 1990 (ITS-
90), the unit kelvin (K) is defined by the condition that the temperature at the liquid-
gas-solid triple point of pure water is t 273.16KT = exactly (Blanke, 1989; Preston-
Thomas, 1990; Rudtsch and Fischer, 2008). As already demonstrated by Galilei in 
1592, most gases and liquids (such as mercury) change their volumes at constant 
pressure proportional to the temperature, and can be used to obtain intermediate 
temperature readings from length measurements between two points at which the 
thermometer is calibrated to certain values. Such points may be the triple points of 
water and of other substances. Similarly, the temperature dependence of the resistance 
of electric conductors (such as platinum) may be exploited to obtain temperature 
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information from measurements of voltages or electric currents. On the other hand, 
certain physical laws such as the ideal-gas law for the pressure of a dilute gas or the 
Stefan-Boltzmann law for the thermal radiation of a black body relate the so-called 
“thermodynamic temperature” to other measurable physical quantities. The progress in 
high-precision experiments permits the detection of deviations between the theoretical 
thermodynamic temperature and the related temperature measured practically with 
calibrated thermometers (Fischer et al., 2011, see Figure 3). Thus, from time to time the 
metrological temperature-scale realization must be revised to improve its consistency 
with the thermodynamic temperature within the uncertainty of the most accurate 
experiments. The most important precursor scales of ITS-90 where those of 1948 
(IPTS-48) and 1968 (IPTS-68). 
 

 
Figure 3. Deviation of the currently best estimate for the thermodynamic temperature, T, 
shown as the bold curve, from the temperature T90 expressed on the current International 

Temperature Scale of 1990, ITS-90. The two symmetric dotted curves represent the 
measurement uncertainty of ITS-90. The dotted curve connecting bigger dots shows the 

deviation of the previous temperature scale of 1968, IPTS-68, from ITS-90. 
Additionally, results of various precision measurements are shown with error bars. 

Diagram adapted from Fischer et al. (2011), courtesy of Joachim Fischer. 
 
In oceanography, the accuracy requirements for temperature measurements are very 
high, even under the harsh conditions at sea. In the most relevant range between 270 K 
and 300 K, the deviation between ITS-90 and IPTS-68 must not be neglected (Saunders, 
1990, see also Figure 3). While modern instruments such as a CTD (see Figure 1) report 
temperatures on ITS-90, most precision measurements of seawater properties were 
carried out with respect to meanwhile obsolete scales. In particular, the previous 
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International Equation of State of Seawater 1980 (EOS-80) and the Practical Salinity 
Scale of 1978 (PSS-78) are specified in terms of IPTS-68. The conversion of data and 
formulas between temperature scales does not only include the temperature value itself, 
also thermal properties such as heat capacities were properly corrected to ITS-90 for the 
construction of TEOS-10 (Rusby, 1991; Goldberg and Weir, 1992; Feistel, 2008a). 
 
A redefinition of the SI unit kelvin (K) is in preparation, among other reasons because 
water is actually not a pure substance with a triple “point” in the T-P diagram. Rather, 
the three-phase equilibrium is possible in a tiny region as a result of the presence of 
different isotopes of hydrogen and oxygen that are mixed in the current Vienna 
Standard Mean Ocean Water (VSMOW). If the isotope ratios in the different phases of 
water vary, the locus of the triple point is slightly displaced within an estimated range of 
14 µK (Nicholas et al., 1996; White et al., 2003; Rudtsch and Fischer, 2008). In the 
upcoming new SI definition of temperature, one kelvin will be defined in terms of the 
energy unit joule, 1 J = 1 N m, by, 
 

B1K 1J / k= ,  (1) 
 
where ( ) –23 –1

B 1.380 6513 18 10 J Kk = ×  is the currently best value of the Boltzmann 
constant to which an exact numerical value will be assigned in the near future 
(Fellmuth, 2003; Quinn, 2007; Seidel et al., 2007; Jones, 2009; Fischer et al., 2011; 
BIPM, 2011). Independent of the redefinition of the kelvin, for a number of years ITS-
90 is expected to remain the internationally agreed scale against which thermometers 
will be calibrated further on, although with an increasingly better known deviation from 
the thermodynamic temperature. 
 
3. Salinity Scale 
 
Seawater is a multi-component aqueous electrolyte solution. The salt dissolved in ocean 
waters is a mixture of a numerous chemical species. Almost two centuries ago (Marcet, 
1819), the empirical rule was discovered that seawater properties all over the world can 
be described rather accurately if only the sample’s temperature, pressure and chlorinity 
are known, ignoring any other details of the chemical composition of sea salt. Here, 
chlorinity (Cl ) of seawater is defined as 0.3285234 times the ratio of the mass of pure 
silver, Agm , required to precipitate all dissolved ions of chloride, bromide and iodide in 
seawater to the mass of seawater, SWm  (Jacobsen and Knudsen, 1940; Millero et al., 
2008): 
 

Ag SW0.3285234 .Cl m m≡ ×  (2) 
 
In the 1960s it turned out that the ratio of the electrical conductivity of seawater to that 
of a reference solution of sodium chloride (KCl) can be measured as accurately but 
much faster and easier than chlorinity by chemical titration. Samples of Standard 
Seawater (SSW) were used to establish a precise empirical relationship between 
conductivity ratio (C ) and Cl  of seawater in the laboratory (Cox et al., 1967; Poisson, 
1980; Culkin and Smith, 1981). The equation 
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( ) 1

P 1.80655  , , (g kg )S Cl C t p −≡ ×  (3) 
 
was then used to define Practical Salinity as a dimensionless quantity on the Practical 
Salinity Scale of 1978 (PSS-78) of SSW as a function of conductivity ratio, Celsius 
temperature t (IPTS-68), and sea pressure p , relative to atmospheric pressure (Lewis 
and Perkin, 1978, 1980; Lewis, 1980; UNESCO, 1981a,b). The numerical value of PS  
is a fairly rough estimate for the mass fraction in g/kg of salt dissolved in SSW. 
Although never endorsed officially, in the oceanographic literature the unit “psu” for 
“Practical Salinity Unit” is often found attached to measured values in order to indicate 
that the given number is expressed on PSS-78. Neither PSS-78 nor “psu” are part of the 
International System of Units, SI (BIPM, 2006). 
 
For absolute salinity, AS , defined as the mass fraction of dissolved material in seawater, 
an estimate better than PS  can be calculated from the best available results of chemical 
composition analyses of SSW. In Table 1 this so-called Reference Composition is 
shown (Millero et al., 2008). 
 

Solute Electric charge Mole fraction Mass fraction Molar mass g mol–1

Na+  +1  0.418 8071 0.306 5958 22.989 769 28(2) 
Mg2+  +2  0.047 1678 0.036 5055 24.3050(6) 
Ca2+  +2  0.009 1823 0.011 7186 40.078(4) 
K+  +1  0.009 1159 0.011 3495 39.0983(1) 
Sr2+  +2  0.000 0810 0.000 2260 87.62(1) 
Cl–  –1  0.487 4839 0.550 3396 35.453(2) 
SO4

2–  –2  0.025 2152 0.077 1319 96.0626(50) 
HCO3

–  –1  0.001 5340 0.002 9805 61.016 84(96) 
Br–  –1  0.000 7520 0.001 9134 79.904(1) 
CO3

2–  –2  0.000 2134 0.000 4078 60.0089(10) 
B(OH)4

–  –1  0.000 0900 0.000 2259 78.8404(70) 
F–  –1  0.000 0610 0.000 0369 18.998 403 2(5) 
OH– –1  0.000 0071 0.000 0038 17.007 33(7) 
B(OH)3 0  0.000 2807 0.000 5527 61.8330(70) 
CO2 0  0.000 0086 0.000 0121 44.0095(9) 
     
Sea salt 0  1.000 0000 1.000 0000 31.404(2) 

 
Table 1. Chemical Reference Composition of sea salt (Millero et al., 2008). Mole 

fractions are exact by definition, mass fractions are rounded to seven digits behind the 
period and may be subject to future updates of molar masses. Uncertainties of the 

IUPAC molar masses (Wieser, 2006) are enclosed in brackets (BIPM, 2006; JCGM, 
2008). The composition obeys exact electro-neutrality. 

 
Summing up the molar masses of the Reference Composition constituents results in a 
relation between Cl , or similarly PS , Eq. (3), and absolute salinity of seawater with 
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ideal-gas equation at higher density. 
VSMOW : Vienna Standard Mean Ocean Water is pure water with 

isotopic composition as defined in 1968 by the International 
Atomic Energy Agency in Vienna. 
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