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Summary 
 
This article is devoted to the photochemistry, measurements and trends of tropospheric 
ozone. The ozone content depends on its precursor atmospheric concentrations. Thus, 
together with ozone, the behavior of active nitrogen oxides, NO and NO2, carbon 
monoxide CO, non-methane hydrocarbons and hydrogen radicals, OH and HO2, are 
considered. The photochemical sources and catalytic destructive cycles for ozone are 
described. The typical spatial and temporal tropospheric ozone content distributions are 
presented and discussed. The photochemistry of ozone precursors, the intensity of their 
sources and sinks, and measurement of their concentration are also considered. The 
climatic effect of ozone and its precursors is discussed. Ozone as an absorber of 
ultraviolet solar radiation, and its danger to humans and animals, is considered. 
 
1. Introduction 
 
Ozone O3, a combination of three oxygen atoms, is a strongly odorous, explosive blue 
gas. Because of its strong oxidation capacity it may be used for organic compounds 
synthesis. Ozone kills microorganisms, and is thus used for cleaning of water and air. 
But ozone is a very toxic, poisonous species and only very low atmospheric 
concentrations are tolerable. 
 
The proportion of ozone molecules in the atmosphere is one ozone molecule to 106 
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molecules of air gases. All ozone molecules in the atmospheric vertical column 
collected together at standard conditions (temperature 15 oC, pressure 1000 hPa) would 
be able to form a layer of about 3 mm thickness. Besides, only 10% of the total ozone 
mass resides in the troposphere. 
Ozone forms entirely in the atmosphere and is destroyed there and on the Earth’s 
surface. In general the ozone content depends on its atmospheric photochemical sources 
and sinks. Thus, the evolution of ozone volume is determined through the ozone active 
atmospheric species behavior. At the various altitudes the contribution of numerous 
species to the atmospheric ozone balance varies considerably. In the troposphere, 
among these species are nitrogen oxides (NO and NO2), methane, non-Methane 
Hydrocarbons (NMHCs, e.g. alkanes, isoprene, terpenes, etc.), carbon monoxide CO, 
and hydrogen radicals, HO and HO2. Most of them have natural as well as 
anthropogenic sources. Therefore, ozone depends on man-made activity also. 
 
Owing to the world-wide efforts of the scientific community over the three last decades, 
there has been enormous success in the study of the atmospheric ozone layer. Our 
knowledge of intensity of ozone photochemical sources and sinks is based mainly on 
model calculations of different complexity. These model estimations are obtained with 
the wide use of atmospheric monitoring data and laboratory investigation results as 
model parameters. 
 
2. Ozone photochemical sources and sinks 
 
Ozone comes into the troposphere in two ways. The first is its transport down from the 
stratosphere. This source is most effective over oceans, i.e. for the regions distant from 
urban intensive pollution sources. Estimates of fluxes across the tropopause remain 
uncertain and have a range of 2×1010 to 6×1010 molecules cm-2 s-1 and it corresponds to 
the annual flux in the range of 240-820 Tg (1 Tg = 1×1012 g). The photochemical 
production is the second route of tropospheric ozone appearance. The ozone molecule in 
the air is generated only in a reaction between molecular and atomic oxygen with 
participation of a third air molecule, M. 
 
O2 + O + M → O3 + M. 
 
Productivity of this reaction fully depends on the atomic oxygen concentration since 
molecular oxygen exists in the whole atmosphere in sufficient quantity (about 21% of 
air volume is O2). In the stratosphere, the main source of atomic oxygen is a photolysis 
of O2 by short-wave radiation with a wavelength less than 242 nm (1 nm = 1×10-9 m). 
But this source is not effective in the troposphere. There the photochemical production 
of oxygen atoms in general is due to the conversion of nitric oxide NO into nitrogen 
dioxide NO2 and then photolysis of NO2 by radiation with a wavelength less than 400 
nm 
 
NO2 + hν → NO + O. 
 
It is necessary to note that the production of both atomic oxygen and ozone occurs 
exclusively during the bright time of the day, and thus depends significantly on 
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seasonally varying daylength. 
 
The direct ozone molecules destruction is due to their reaction with atomic oxygen 
 
O3 + O → O2 + O2 
 
and their photolysis by solar ultraviolet (UV) and visible radiation 
 
O3 + hν → O2 + O(1D) 
       → O2 + O. 
 
The rate of the first reaction is very slow and its contribution to ozone destruction is 
small. The ozone photolysis product outcome depends on the spectral wavelength: 
together with O2; it is excited oxygen, O(1D), if the wavelengths are less than 310 nm 
and oxygen in its basic state, O(3P), for the longer wave lengths. However, the ozone 
photolysis products may combine together and an ozone molecule is produced again 
(see above). As a result, the joint action of the above reactions is very much less 
effective than that of ozone destructive catalytic cycles. The scheme of such cycle is 
simple and may be written as a pair of reactions  
 
R + O3 → RO + O2 
 
RO + O → R + O2 
 
whose sum is  
 
O3 + O → O2 + O2. 
 
The various atmospheric radicals may be considered as “R”, for example, NO, OH, Cl, 
Br and others. Usually, the catalytic cycles are named by relevant radical, e.g. nitrogen 
(if R=NO) or chlorine (if R=Cl) ones. Generally speaking, the hydrogen catalytic cycle 
(R = OH) makes the largest contribution to the tropospheric photochemical ozone sink. 
The effectiveness of this catalytic cycle depends in turn on OH abundance in the 
troposphere. As hydroxyl is the most reactive atmospheric radical, many air compounds, 
primarily, CO, NMHCs, methane, and nitrogen oxides, participate in reactions forming 
or destroying OH molecules. Thus, the hydroxyl concentration depends on alignment 
among these species. And as a result these directly nonreacting with ozone species 
affect significantly the tropospheric ozone balance through their control of tropospheric 
OH abundance. 
 
The other route of removal ozone molecules from the troposphere is its destruction by 
contact with the ground surface. Interaction between ozone and the surface is most 
intensive over oceans but it occurs also through contact with the soil, plants, and various 
other materials. In particular, part of this interaction, over the oceans, is estimated to be 
approximately one-fourth of the net photochemical ozone sink. 
 
In spite of obvious progress in recent studies, significant uncertainty remains in our 
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understanding of heterogeneous reactions (i.e. reactions on aerosols, drops and so on) 
forming the ozone balance. The latter due to catalytic destructive radicals depends on 
the season, time of the day and on latitude of location (on solar zenith angle) almost 
completely. So the ozone lifetime is varying significantly also in space and time. 
According to the calculations, ozone molecules “live” in the troposphere from several 
hours to few days. 
 
3. Tropospheric ozone content measurements 
 
Ozone monitoring in the surface air was achieved over many decades at various points 
of the globe and much information was accumulated. In situ, the ozone content mainly 
depends on the local climate features, in particular, on cyclone activity. It is typical for 
the zones of high intensity of air transport to have a rapid change of ozone 
concentration. As a result, ozone concentration may change sharply over a few days (or 
sometimes, hours). Therefore, averaged data (e.g. diurnally, monthly, seasonally or 
annually averaged ones) are normally used. 
 
A typical ozone mixing ratio near the Earth’s surface is 20 to 100 ppbv (parts per billion 
by volume) for the relatively unpolluted regions but in the urban atmosphere it may be 
two-three times higher. Tropospheric ozone content has significant seasonal variations: 
its maximum is in late spring-summer when the atmosphere is best illuminated, the 
ozone photochemical source is most intensive, and stratospheric ozone transport into the 
troposphere is at its maximum. This fact is illustrated by the data in Table 1, where 
seasonal variations of surface ozone mixing ratio at several points in USA are shown. 
As seen in Table 1, the maximum mixing ratios exceed the minimum by a factor of 1.5 
to 2.5. 

 
Month Site Location 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Harvard 
Forest 

42oN, 
70oW 22 30 38 42 42 50 48 45 35 30 23 24 

Oregon 42oN, 
120oW 29 31 36 38 41 42 40 45 35 30 28 26 

Arizona 34oN, 
110oW 30 38 47 50 50 49 50 50 45 43 40 31 

Virginia 38oN, 
80oW 27 30 36 52 55 60 58 56 48 40 29 20 

Indiana 38oN, 
85oW 22 35 36 48 50 62 58 57 46 32 20 19 

Bermuda 30oN, 
65oW 39 38 46 47 46 30 22 21 22 25 36 40 

By data from J.L. Liang, L.W. Horowitz, D.J. Jacob, Y. Wang, A.M. Fiore, J.A. Logan G.M. Gardner, 
J.W. Munger (1998). Seasonal budgets of reactive nitrogen species and ozone over the United States, and 
export fluxes to the global atmosphere, Journal of Geophysical Research, v. 103,  13 435-13 450. 

 
Table 1. Seasonal variations of surface ozone mixing ratio (ppbv) measured over the 

United States during 13:00-16:00 period except Bermuda data where diurnally averaged 
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data are used. 
 

Figure 1 demonstrates the vertical distribution of ozone mixing ratio at the tropospheric 
altitudes for various regions of the globe. Here the means only are presented without 
their range of variations. These data show the increase of ozone mixing ratios with 
altitude. But their vertical gradient varies significantly: it is maximal for the high 
latitudes (Nova Scotia, Alaska) and minimal for the data over the Philippine Sea. 
 

 
 

Figure 1. Vertical profiles of ozone mixing ratio (ppbv) measured in various regions of 
the globe: Easter Island (solid triangle), Philippine sea (open triangle), West coast of 

Africa (solid circle), East coast of China (open circle), Southeastern US (open 
diamond), Nova Scotia, Canada (solid diamond), Eastern coast of Brazil (open square), 
Alaska (plus). Data are from Emmons L.K. (National Center for Atmospheric Research, 
archive (http://aoss.engin.umich.edu/SASSarchive/) and B.A. Ridley, J.G. Walega, J.-F. 

Lamarque, F.E. Grahek, M. Trainer, G. Hübler, X. Lin, F.C. Fehsenfeld (1998) 
Measurements of reactive nitrogen and ozone to 5-km altitude in June 1990 over the 

southeastern United States, Journal of Geophysical Research 103, 8369-8388. 
 
Long term measurements of surface ozone content indicate some growth of its annually 
averaged mixing ratio in the northern hemisphere but its decrease in the Antarctic. For 
example, trends of surface ozone mixing ratio at the Mauna Loa observatory (19oN) and 
at Cape Barrow (71 oN) are about 0.30-0.36%yr-1 against -0.72% yr-1 at the South Pole 
lasting recent years. At the same time, there are significant differences in surface ozone 
content: 25-28 ppbv near the poles against 40 ppbv at Mauna Loa (data averaged during 
the 1974-1997 period). The recent measurements by the dense ozonemetric net of 
western Europe has shown some decrease of surface ozone growth rate in many 
industrial European regions. But high levels of ozone mixing ratio (50-70 ppbv) 
remained there. Such levels are of anthropogenic origin.  
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