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Summary  
 
All what we know about celestial objects, and stars in particular, come from the detailed 
analysis of their light. Astronomers of the 20th century succeeded in determining most 
of the intrinsic properties of individual stars from clever studies of detailed 
observations, associated with computations and comparison with models. The first 
information needed to be able to reach the intrinsic properties of stars is their distances. 
After a general introduction, we discuss in Section 2 the most important methods used 
to determine the distances of individual stars. We then give information about stellar 
temperatures, chemical composition, masses and radii, rotation, etc. Section 3 is devoted 
to the computations of the stellar internal structure, and how this can be used to match 
the observations and derive stellar properties and evolution. An emphasis is given on 
time scales, and the very important HR diagram, key for our understanding of stars, is 
presented. In Section 4, we discuss variable stars and the new developments of 
asteroseismology, which represents the study of stellar oscillations: stars behave as 
resonant cavities, like musical instruments, and the observations of their oscillations 
give precise information on their internal structure. Finally, Section 5 is devoted to the 
late stages of stellar evolution, which are different according to their masses: low mass 
stars, with masses smaller than eight times the solar mass, end as White Dwarfs stars 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

ASTRONOMY AND ASTROPHYSICS – Single Star – Sylvie D. Vauclair and Gerard P. Vauclair 

©Encyclopedia of Life Support Systems (EOLSS) 

whereas more massive stars explode and become neutron stars or black holes. The 
chapter ends with the conclusion in Section 6. 
 
1. Introduction 
 
Stars are giant gas balls in space, more precisely self gravitating spheres. Big gaseous 
spheres can form and remain stable without dissipating in the nearly empty surrounding 
space provided that they are huge enough to keep their outer layers under their own 
weight. Such spheres are allowed to bear the name of stars only if they are able to 
become stable in the long term due to energy production by nuclear reactions. During 
their early evolution, they must reach in their center a temperature of the order of 15 
million degrees, necessary for the nuclear fusion of hydrogen. To achieve such a state, 
their mass must be at least 8% of that of the Sun ( M ), that is about 291.5 10× kg. Below 
that mass, gaseous spheres can form but they do not become real stars. They are called 
“brown dwarfs”. The upper mass limit of stars is less precise, as it depends on complex 
physical phenomena occurring in massive stars, like radiation pressure effects. It is 
generally assumed as about 150 M . 
  
Stars form in galactic nebulae, when adequate gaseous condensations are created by 
chance. The reason for such condensations can be of various types: shock waves coming 
from other stellar explosions, collisions inside galactic arms, interactions between 
galaxies, etc. Generally stars do not form individually: more than half of them are 
double or triple, and even single stars form collectively, many of them in the same 
original cloud. Then they may live their own life, moving their own way, independently 
from the other ones. 
 
The general knowledge of the structure and evolution of single stars was settled during 
the 20th century. The basic equations were written at the very beginning of the century, 
but they could not be solved with a pencil on a sheet of paper. Astronomers became able 
to compute the internal structure of stars only with the emergence of numerical 
computers, at the middle of the century. At the present time, the structure and the 
evolution of single stars on the main-sequence are often thought of as solved and fully 
understood questions. This is only true at first sight as there are still many unknown 
problems in the details of stellar physics. For later stages of stellar evolution the 
problems are far from being solved! The situation is much more complicated when 
adding rotation, magnetic field, mass loss, and all kinds of stellar interaction with the 
surroundings.  
 
Under such assumptions, the stars represent beautiful examples of natural physical 
laboratories. Their structure and evolution can be determined in a straightforward and 
clear way, and compared with the observations. However, stars in their natural 
environment do not have a completely solitary behavior. At the end of the 20th century, 
the existence of disks and planets around stars has been discovered. This seriously 
modifies the ideas concerning stellar formation and evolution in their early lives, as they 
may accrete outer matter in the long term. Later on in their evolution, they lose mass 
through stellar winds, and this ejection of matter can be very important in some cases. 
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Also stars rotate, which creates internal motions of matter, and they often have magnetic 
fields.  
 
Studies of single stars in the 21st century are focused on all these processes which 
perturb the clean but partial interpretations of the preceding century. Also a very 
important discovery has brought a new light in the comprehension of stars: many of 
them oscillate due to acoustic or gravity waves which propagate inside the big spheres 
and are observable in their outer layers. The study of these oscillations, or 
asteroseismology, leads to precise determination of the stellar observed parameters, and 
also to precise sounding of their internal structure.  
 
2. Stellar Observational Data 
 
All what we know about stars comes from the analysis of their light, at all wavelengths. 
The aim is to obtain from the observations the maximum information on the intrinsic 
parameters of the stars (luminosity, temperature, mass, chemical composition, radius if 
possible, etc.), so that it can later be compared with the theoretical computations and 
give constraints on their internal structure. The first important measures which have to 
be done to reach the stellar intrinsic parameters are their distances, so that we may have 
access to the real energy they radiate and not only to that received on the Earth. 
 
2.1. Distances 
 
2.1.1. Direct Methods 
 
The distances of close-by stars can be measured directly by simple triangulation 
techniques. The notion of close-by depends on the precision of the observations. Before 
sending instruments in space, only 6000 stars could have their distances directly 
measured. As will be seen below, this number has increased to 250 000 with the 
Hipparcos satellite, and it will soon go up with the space mission GAIA, which should 
be launched at the end of 2012. 
 
Triangulation is the kind of method applied by our brain with our two eyes to estimate 
the relative distances of the objects that we observe. Both eyes look at the same object 
and see it in a slightly different direction, due to their own separation (called the 
triangulation basis). The angle between the two observing directions of the same object 
may give its distance, if we know the triangulation basis. This method is widely used on 
Earth, using two well separated telescopes, to determine the distances of far sites.  
 
The largest possible triangulation basis on Earth would be the Earth diameter itself, but 
it is not large enough to allow measurements of stellar distances. Astronomers had to 
find larger observing separations. Fortunately, the Earth orbits around the Sun, and its 
annual motion can be used in this respect. If one observes a close-by star in January and 
the same star in June, the line-on-sight is modified with respect to far-away stars, due to 
the Earth displacement.  
 
In real observations, the same star is followed all the year round. If the stars did not 
move at all with respect to the Sun, the Earth motion would be the only process to take 
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into account, and the star would seem to describe an ellipse in the sky. This virtual 
ellipse, projection in the sky of the Earth orbit, is called the parallactic ellipse and the 
angle under which the star “sees” the radius of the Earth orbit is the parallax. An 
important astronomical distance unit is defined from these observations: the parsec 
(abbreviated as pc), which is the distance of a star corresponding to a parallax of one 
arcsec. One can easily compute that 1 pc = 3 x 1016 m , which is approximately equal to 
3.26 light-years (the fact that the parsec and the light-year represent units with similar 
orders of magnitude is pure coincidence). 
 
The situation is indeed more complicated due to the fact that all stars move in the 
Galaxy, so that the observed star has a proper motion with respect to the Sun. A typical 
representation of the motion of a close-by star in the sky is given in Figure 1. The 
oscillations are due to the superposition of the parallactic ellipse to the stellar proper 
motion. The basic principles for these distance determinations by triangulation are quite 
simple, but their real applications to stars are difficult and need precise techniques that 
astronomers have developed. 
 

 
 

Figure 1.Apparent motions of close-by stars in the sky, due to the Earth rotation around 
the Sun. On the left: schematic drawing of the annual effect on the apparent stellar 

motion, due to the Earth. On the right: three-years motion on a celestial map of a typical 
star observed by Hipparcos. The axes represent the usual celestial coordinates: 

declination in ordinate and right ascension in abscissa. The values are given in units of 
milli arc seconds (mas). The red curve represents the motion the star would have 

without the Earth motion. The green curve represents the observed motion, which is a 
combination of the real motion with the “parallactic ellipse” , due to the Earth 

displacement. The short blue lines correspond to the uncertainties on the observations 
 

Sending satellites in space allows much better precision on the measurement of very 
small angles than from the ground, because of the perturbations induced by the Earth 
atmosphere. The space mission GAÏA, of the European Space Agency, which should be 
launched in 2012, will be able to measure the distances of celestial objects up to 25000 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

ASTRONOMY AND ASTROPHYSICS – Single Star – Sylvie D. Vauclair and Gerard P. Vauclair 

©Encyclopedia of Life Support Systems (EOLSS) 

pc with a precision of 10%. It will give a complete set of distance measurements with a 
precision better than 1% for all existing stars up to 100 pc. This amounts to ten to one 
hundred millions of stars. 
 
2.1.2. Indirect Methods 
 
Triangulation is a precise and powerful method, but at the present time, with the 
presently available instruments, it can be applied only to stars living in the solar 
neighborhood, inside our own Galaxy. The distances of far-away stars have to be 
determined with indirect methods. These methods mostly rely on the various statistical 
laws which can be derived from the sample of stars with well-known, directly 
measured, distances.  
 
A special case concerns the stars which belong to a galactic stellar cluster, like that of 
the Hyades, also called the Bull stream (as the Hyades lie in the constellation of the 
Bull). These stars have all been formed at the same time, from the same interstellar 
cloud, and most of them have kept similar motions in the galactic frame, which are that 
of the original cloud. This can help in determining their distances, as discussed below. 
 
Observed from the Earth, the velocity of a star can be developed in two components; the 
first one on the line-of-sight, namely the radial velocity, that can be directly determined 
using the Doppler effect, and the second one, the tangential velocity, that cannot be 
determined unless one knows the distance of the star. What astronomers can easily 
measure, by observing the same star during several decades, is its proper motion that is 
its angular displacement with time on the night sky, measured with respect to far-away 
stars. If the distance is unknown, it is impossible to derive whether it is a close-by star 
with a small tangential velocity, or a more distant star with a larger velocity. Inversely, 
if one knows the real tangential velocity from a different determination, like in the Bull 
stream, the measure of the proper motion leads to the stellar distance. 
 
In most cases, stellar distances are obtained by finding a way to determine the energy 
that the considered star radiates per second, using statistical laws and established 
correlations. Knowing this energy, and the energy received on Earth from the same star 
per second and per surface unit, one can find the distance of the star. This is discussed 
in more details in Section 2.2. A very important case concerns the pulsating stars, like 
the Cepheids and RR Lyrae stars, which present periodic oscillations of their emitted 
light. As a general rule, the brighter the star, the longer the period of the oscillations. 
Precise correlations have been obtained, which are used to determine the intrinsic stellar 
radiated energy, and thereby its distance. This important subject is discussed in Section 
4. 
 
2.2. Stellar Luminosities 
 
By definition, the luminosity of a star is the total energy radiated per second by the star 
in all directions and all wavelengths. This is an intrinsic quantity for the star, which 
does not depend on the observer. The solar luminosity is 264 10L = × watts. On Earth, 
the observer cannot measure directly the stellar luminosity. He measures a radiation flux 
per surface unit, coming from the star, which is generally referred to as the brightness. 
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If the distance D of the star is known, the luminosity can in principle be determined 
from the observed light flux F by the simple equation: 
 

( )24L F Dπ=  (1) 
 
However the determination of the stellar brightness is complicated by two different 
problems. The first one is that the Earth’s atmosphere absorbs part of the radiation, and 
it may vary with time. The light flux has to be corrected for this effect. The second 
problem is that it is nearly impossible to measure directly a light flux integrated on all 
wavelengths. The instruments which are used are more sensitive in some wavelengths 
than in the others, and the way it varies depends on the type of instrument. As will be 
seen below, this complication is in fact very useful for the determination of the surface 
temperatures of stars. 
 
2.2.1. Apparent Magnitude 
 
In old (Hellenistic) times, the stars were classified in terms of magnitudes as seen with 
the naked eye. The brightest observed stars were said to be of first magnitude, the less 
visible ones were defined as sixth magnitude stars. The next magnitude in the scale was 
defined such that the corresponding stars appeared half as bright as the previous ones to 
the naked eye. In mathematics, such a scale is called logarithmic.  
 
In modern ages, astronomers decided to keep that scale and to formalize it in the form 
of an equation, called Pogson law (from Norman Robert Pogson, 1856). By definition, 
the apparent magnitude difference between two stars is written: 
 

( )1 2 1 22.5logm m F F− = −  (2) 
 
where 1F  and 2F  are the light fluxes received from the stars above the Earth’s 
atmosphere per surface unit. The zero of the scale is obtained by arbitrarily attributing a 
value to a given star (e.g. magnitude zero to the bright star Vega). In this scale, the 
bright star Sirius has an apparent magnitude of -1.4 whereas the full Moon has a 
magnitude -12.74. The most powerful telescopes at the present time can observe stars 
up to about magnitude 30. 
 
As the fluxes are measured with specific instruments at specific wavelengths, with 
specific instrumental responses, they have to be measured exactly in the same way for 
the two stars. The resulting apparent magnitudes differ according to the instrumental 
bias. The apparent magnitude integrated in all wavelengths could in principle be 
measured using an instrument like a bolometer. For this reason, the total apparent 
magnitude is called “apparent bolometric magnitude”. However, it is generally obtained 
using theoretical computations, as discussed below. 
 
2.2.2. Absolute Magnitude 
 
The apparent magnitude of a star depends on its distance, as it is related to the flux 
received on Earth. An absolute scale was needed to represent the intrinsic energy 
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radiated from the star. For practical reasons, the absolute magnitude of a star has been 
defined as the magnitude the star would have if it was situated at a distance of 10 pc. 
The relation between the absolute magnitude and the apparent magnitude of the same 
star is easy to obtain, assuming that there are two different stars, the real one and a 
virtual one with the same luminosity, but situated at 10 pc (cf. Eq. (2)): 
 

5 5logM m D− = −  (3) 
 
where M  is the absolute magnitude, m the apparent magnitude and D  the distance 
measured in parsecs. 
 
When the absolute magnitude is determined from the measured apparent magnitude and 
the stellar distance using Eq. (3), the question of the instrumental response and 
wavelength bias has to be taken into account. Different absolute magnitudes, using 
different filters for the observations, may be defined for the same star. The absolute 
magnitude integrated on all wavelengths is the bolometric absolute magnitude.  
 
The bolometric absolute magnitude difference between two different stars is then 
simply related to their luminosities: 
 

( )1 2 1 22.5logM M L L− = −  (4) 
 
- 
- 
- 
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Malkov O.Y. (2007). Mass-luminosity relation of intermediate-mass stars. Monthly Notices of the Royal 
Astronomical Society 382,  pp. 1073-1086.  [A study of the mass-luminosity, mass-temperature and mass-
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*Mestel L. (1999). Stellar Magnetism. Oxford: Clarendon (International series of monographs on 
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Michaud G. (1970). Diffusion processes in Peculiar A stars. The Astrophysical Journal 160,  pp. 641-658.  
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Michaud G., Charland Y., Vauclair S., Vauclair G. (1976). Diffusion in main-sequence stars-Radiation 
forces, time scales, anomalies. The Astrophysical Journal 210,  pp. 447-465.  [A first general study of the 
effects of diffusion on main sequence stars, on the method to calculate them and on the predicted 
abundance anomalies they could produce.] 

Michaud G., Richer J., Richard, O. (2010). Atomic diffusion during the red giant evolution. Astronomy & 
Astrophysics 510, pp. 104-114.  [An example of a detailed calculation  of element diffusion and of its 
effect on stars evolving along the red giant branch]. 

Michaud G., Vauclair G., Vauclair S. (1983). Chemical separation in horizontal branch stars. The 
Astrophysical Journal 267, pp. 256-270.  [The first study of the effect of element diffusion on stars 
located on the horizontal branch]. 

Michel E., Baglin A., Auvergne M. et al. (2008). CoRoT measures Solar-Like oscillations and granulation 
in stars hotter than the Sun. Science 322,  pp. 558-560.  [A pioneering article announcing the discovery of 
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Neuhäuser R. (1997). Low mass pre-main sequence stars and their X-ray emission. Science 276, pp. 
1363-1370.  [A study of the X-ray emission from stars in the process of formation obtained withe 
satellites ROSAT and ASCA]  

Noyes R.W., Hartmann L.W., Baliunas S.L. et al. (1984). Rotation, convection, and magnetic activity in 
lower main-sequence stars. The Astrophysical Journal 279,  pp. 763-777.  [An observational  study on the 
rotation and the convection  which are the ingredients of the dynamo theory to produce magnetic fields in 
stars ]. 

Osterbrock D.E. (1964). Planetary Nebulae. Annual Review of Astronomy and Astrophysics 2,  pp. 95-
120. [An early review on the 700 planetary nebulae known at the time of the writing which gives a clear 
description of many of the physical processes s involved]. 

Paczynski B. (1970). Evolution of single stars I. Stellar evolution from Main Sequence to white dwarfs or 
carbon ignition. Acta Astronomica 20,  pp. 47-58. [One of the very first complete evolution calculation 
from the main sequence to the white dwarf or carbon ignition stages].  

Paczynski B., Szczygiel D.M., Pilecki B., Pojmanski G. (2006). Eclipsing binaries in the All Sky 
Automated Survey Catalogue. Monthly Notices of the Royal Astronomical Society 368,  pp. 1311-1318.  
[An example of the potential power of automated survey in discovering variable stars; here the authors 
focus on the discovery of eclipsing binaries]. 

Perryman M.A.C., Lindegren L., Kovalevsky J. et al. (1997). The Hipparcos Catalogue. Astronomy & 
Astrophysics 323,  pp. 49-52.  [A short description of the principal characteristics of the Hipparcos 
catalogue]. 

Piskunov A.E., Kharchenko N.V., Röser S. et al. (2006). Revisiting the population of Galactic Open 
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population using data from Hipparcos astrometric satellite and its Tycho-2 photometric catalogue, which 
gives a complete sample to about 850 pc from theSun.]    

Pottasch S.R., Bernard-Salas J. (2006). Planetary Nebulae abundances and stellar evolution. Astronomy & 
Astrophysics 457, pp. 189-196.  [A study of planetary nebulae element abundances derived from 
measurements by the satellite ISO]. 

Quirrenbach A. (2001). Optical Interferometry. Annual Review of Astronomy and Astrophysics 39, pp. 
353-401.  [The author reviews the  progresses in optical interferometry and how they allowed 
measurements of star diameters, the detection of stellar surface structure; he also describes progress in 
some key technological areas.] 

Sandage A., Tammann G.A. (2006). Absolute magnitude calibrations of Population I and II Cepheids and 
Other Pulsating Variables in the instability strip. Annual Review of Astronomy and Astrophysics 44,  pp. 
93-140.  [A comprehensive analysis of the methods applied in determining the absolute magnitude of the 
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*Schwarzschild M. (1978). Structure and Evolution of the stars. New-York; Dover Publication.  [An 
illuminating classical text-book on stellar structure and evolution]. 

Shapiro S.L., Teukolsky S.A. (1983). Black holes, white dwarfs, and neutron stars: the physics of 
compact objects. 645 pp. New-York, Wiley-Interscience.  [This is a reference book which requires a solid 
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*Tassoul J.-L. (1978). Theory of rotating stars. 506 pp.  Princeton Series in Astrophysics, Princeton 
University Press. [A comprehensive text-book on the effect of rotation on stars]. 

*Unno W., Osaki Y., Ando H., Shibahashi H. (1989). Nonradial oscillations of stars. 420 pp. Tokyo, 
University of Tokyo Press, 2nd ed.  [A reference text-book for students and researchers in the field of 
stellar seismology]. 

van Winckel H. (2003). Post-Asymptotic Giant Branch stars. Annual Review of Astronomy and 
Astrophysics 41, pp. 391-427.  [The author reviews the ample data obtained on post-AGB stars, both on 
the central stars and their circumstellar material, including the significant fraction of post-AGB stars in 
binary systems]. 

Vauclair S., Vauclair G. (1982). Element segregation in stellar outer layers. Annual Review of Astronomy 
and Astrophysics 20,  pp. 37-60.  [The basics of the diffusion theory and its effect on chemical element 
anomalies in various region of the H-R diagram are described ]. 

Vauclair G., Vauclair S., Greenstein J. (1979). The chemical evolution of white dwarf atmospheres- 
Diffusion and accretion. Astronomy and Astrophysics 80,  pp. 79-96.  [The first study of the effect of 
diffusion, including the radiative acceleration, in white dwarf stars]. 

Warner B. (2006). A practical guide to lightcurve photometry and analysis. Springer Science + Business 
Media. [A usefull guide for professional and amateur astronomers interested in photometric techniques to 
observe variable stars].  

Weidemann V. (1990). Annual Review of Astronomy and Astrophysics 28,  pp. 103-137.  [An early 
review focusing on the white dwarf stars and on the central stars of planetary nebulae as their 
progenitors]. 

Wickramasinghe D.T., Ferrario L. (2000). Magnetism in isolated and binary white dwarfs. Publications of 
the Astronomical Society of Pacific 112,  pp. 873-924.  [A review on  magnetic fields in degenerate stars 
which complements the one by Donati and Landstreet cited above]. 

Winget D.E., Kepler S.O. (2008). Pulsating white dwarf stars and precision asteroseismology. Annual 
Review of Astronomy and Astrophysics 46,  pp. 157-199.  [Another comprehensive review of the 
properties of pulsating white dwarfs which gives a complementary view to the ones given in the reviews 
by Fontaine et al. (2001 and 2008) cited above].   

Wuchterl G., Tscharnuter W.M. (2003). From clouds to stars. Protostellar collapse and the evolution to 
the pre-main sequence.I. Equations and the evolution in the Hertzsprung-Russel diagram. Astronomy & 
Astrophysics 398,  pp. 1081-1090.  [The authors present the first study of the early stellar evolution 
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Willson L.A. (2000). Mass loss from cool stars: Impact on the evolution and stellar populations. Annual 
Review of Astronomy and Astrophysics 38, pp. 573-611.  [The review emphasizes the mass loss processes 
that affect the evolution of single stars with masses between one and nine solar masses].  

Zahn J.-P. (1992). Circulation and Turbulence in rotating stars. Astronomy & Astrophysics 265, pp. 115-
132 . [In this article the interaction between meridional circulation and turbulence in rotating  
nonmagnetic stars is examined].   
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