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Summary 
 
We discuss how stars enrich the Galaxy with all of the elements we see around us. We 
begin by discussing the various nuclear reaction chains and cycles and their properties. 
We then show how these occur in stars, and how they combine with the structure and 
evolution of a star to expel those elements into the Galaxy. Finally we briefly discuss 
how this information is used to create a model for the chemical enrichment of the 
Galaxy. 
 
1. Introduction 
 
Our topic for discussion covers the smallest and the largest length scales – we will see 
how the physics of sub-atomic particles leads to changes in the bulk composition of the 
Universe as a whole. In the middle, providing the link between the two extremes, sit the 
stars, nature’s nuclear fusion reactors. It is the stars that do the nuclear cooking and then 
provide a mechanism for getting the results of that cooking to the surface of the star and 
then later into the Galaxy. Through a combination of mixing events, mass ejection and 
huge explosions, the stars enrich their immediate surroundings with the products of their 
earlier evolution. What was once a gas composed only of hydrogen and helium from the 
Big Bang now contains carbon, nitrogen, oxygen, silicon, iron etc. Indeed, it now 
contains all of the elements needed to make planets and life itself. The next generation 
of stars forms from this new mixture. These stars behave differently as a result of their 
different composition. Yet they also “cook” new elements and somehow return them to 
the Galaxy. Slowly the composition of the Galaxy changes due to these effects, in a 
process known as “galactic chemical evolution”. As the Galaxies change composition, 
so too does the Universe. 
 
We will not be able to cover all aspects of this topic here; the reader is referred to other 
topics in this series as useful background and introductory material. But we will attempt 
to give an introduction to the topic of how stars enrich the Universe. 
 
2. Nuclear Reactions in Stars 
 
The first step in our journey is to understand the main nuclear burning phases in stars. 
(We refer the reader to the article on Big Bang nucleosynthesis to see how that event 
produced the hydrogen and helium from which the first stars will form.) It is this 
nuclear burning that provides the star with the energy source to hold itself up against 
gravity, but it also changes the composition and produces new elements as a by-product. 
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The reader is referred to the Chapters on “The Physics of Stars” and “Single Stars” as 
introductions to this section. 
 
When we are concerned with the structure and evolution of a star, we must consider the 
main nuclear reactions, meaning those that produce the most energy or the largest 
compositional changes. However for our purposes we are interested in reactions that 
will produce changes in the observable composition of a star, even if they are not 
important to the energy production. Hence we will consider not only the main reactions 
occurring in stars, but we will need to look at some of the reactions that produce new 
species even though they are unimportant from a structural viewpoint. 
 
2.1. Hydrogen Burning 
 
The longest phase in a star’s life is the time it spends burning hydrogen into helium in 
its core on the Main Sequence, also known as the Hydrogen burning phase. These 
reactions are fundamental to the lives of stars and we discuss them first. 
 
2.1.1. The pp Chains 
 
The most elementary reactions involve burning hydrogen by fusing two protons 
together (A proton is simply a hydrogen nucleus; we will use the terms interchangeably. 
Similarly, a 4He nucleus is also known as an α  particle.) . These are the start of the “pp 
chains” for hydrogen burning, and are shown in Figure 1. These reactions can occur in a 
gas that is composed initially of pure hydrogen, and are thus important for the first stars 
to form after the Big Bang. We will see below that other hydrogen burning reactions use 
heavier species as catalysts and hence can not have been active (at least initially) in the 
first stars, which were composed entirely of hydrogen and helium. Also, because the 
Coulomb barriers for protons are the lowest available, these reactions will start at the 
lowest temperatures of all hydrogen burning reactions. They are the main source of 
energy in stars with masses less than about a solar mass ( M ), or composed entirely of 
hydrogen and helium.  

 
Figure 1. The proton-proton chains for hydrogen burning. An asterisk denotes an 

excited state of the nucleus. 
 
From the viewpoint of someone interested in nucleosynthesis, the pp chains are not very 
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interesting. They turn protons into 4He and in the process they produce very small 
amounts of 2D and 3He. Deuterium is often referred to as 2D but since it is simply an 
isotope of hydrogen is also correct to write it as 2H. We will use both terms 
interchangeably. (A deuterium nucleus is also sometimes called a “deuteron” and is 
often written as simply d.) The only other item of note in the pp chains is the destruction 
of 7Li and 7Be. Although these are both produced and destroyed in the pp chains, any of 
these species initially present will be destroyed very easily, at quite low temperatures (a 
few million K). The main effect of the pp chains is summarized in Table 1.  
 

Species Effect Note 
1H destroyed  
2D produced very low levels 

3He produced  
4He produced  
7Li destroyed  
7Be destroyed  

 
Table 1. The main results of pp chains. 

 
2.1.2. The CNO Cycles 
 
The next important set of reactions for hydrogen burning are the CNO cycles. Here 
various CNO nuclei play the role of catalysts, being consumed at the start of the cycle 
but being returned again later in the cycle. There are four main CNO cycles, as 
illustrated in Figure 2. The higher nuclear charge here means that higher temperatures 
are required to initiate these reactions. They are the dominant energy source for 
hydrogen burning in stars more massive than the Sun, and also in shell hydrogen 
burning of all stars (Except those comprised purely of hydrogen and helium.).  

 
 

Figure 2. The CNO cycles for hydrogen burning. Unstable species are shown in dotted 
circles. 
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Clearly there is much going on here, but fortunately a simple understanding is possible. 
The timescales are such that we can consider the various cycles as largely separate. First 
consider just ICNO  in Figure 2. This is usually referred to as “the CN cycle.” Despite 
all the species involved, remember that the main result is the burning of protons into 
4He. Within the CNO species, the main results are the destruction of 12C and the 
production of 13C and 14N. The slowest reaction is 14N(p,γ)15O so the result is that most 
of the CNO nuclei accumulate in 14N. When the CN cycle operates in equilibrium the 
resulting ratio of carbon isotopes is 12C/13C 3= –5 , depending on the temperature. 
Hence one can use observations of this ratio to indicate that the CN cycle has been 
active in the star.  
 
Moving to CNOII in Figure 2, which is usually referred to as “the ON cycle”, we have 
very analogous behavior. Again, do not be confused by the large number of species 
involved: the main effect is burning hydrogen into helium. This is achieved through 
cycling ON nuclei through the reactions in the figure. The slowest reaction is still the 
proton capture on 14N so most species eventually end up as 14N, with destruction of 16O 
and the production of small amounts of 17O if the temperature is below about 25 million 
K, or the destruction of 17O if the temperature is higher.  
 
The CNOIII and CNOIV cycles produce small amounts of 18O and 19F for temperatures 
below about 25 million K, but destroy these species at higher temperatures. This raises 
an important point, however. Some species, and 19F is a good example, owe their fate 
not to a single nuclear reaction chain, such as the CNO cycles, but to the interplay of 
various reactions with the structural behavior of a star. This will be discussed further in 
Section 3.  
 
 
 

Species Effect Note 
1H destroyed  

4He produced  
12C destroyed  
13C produced 12C/13C = 3-4 in equilibrium  
14N produced Almost all CNO nuclei end up as 14N  

  if cycle runs to hydrogen exhaustion  
15N produced in small quantities  
16O destroyed  
17O produced if burnt at 25T <  million K  

 destroyed if burnt at 25T >  million K  
18O produced in small quantities,   

  if burnt at 25T <  million K  
 destroyed if burnt at 25T >  million K  

19F produced in small quantities,   
  if burnt at 25T <  million K  
 destroyed if burnt at 25T >  million K  

 
Table 2. The main results of CNO cycling. 
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Finally we discuss the “hot” CNO cycles. A careful examination of Figure 2 will show 
that the unstable species are all assumed to undergo β -decay. However at very high 
temperatures we must allow for the possibility that proton capture may occur on a 
similar timescale to the decay. Hence the unstable species may suffer two fates: a β -
decay or a proton capture. There are some environments where these reactions are 
important, such as X-ray bursts, but we will not discuss these any further here. A 
summary of the action of the CNO cycles is given in Table 2. 
 
2.1.3. The Ne-Na Chain 
 
The Ne-Na chain is shown in Figure 3 and is quite analogous to the individual CNO 
cycles. Compare Ne-Na with CNOI for example. The Ne-Na chain is directly linked to 
the CNO cycles by the fate of 19F; a proton capture will produce 20Ne and open the Ne-
Na reactions. Whether these behave as a chain or a cycle depends on the relative rates of 
the (p,γ) and (p,α) reactions occurring on 23Na. If the (p, γ) channel dominates then the 
Ne-Na reactions operate as a chain that sends species through to the Mg-Al chain (see 
below). If the (p, α) dominates then the reactions behave as a cycle, very much in 
analogy with the CN and ON cycles discussed earlier. In practice the reactions are a 
cycle for 50T <  million K and a chain for higher temperatures. Note, of course, that all 
of these values are subject to revision as we determine the reaction rates more 
accurately.  

 
Figure 3. The Ne-Na and Mg-Al reactions for hydrogen burning. The Ne-Na reactions 

are on the left and the Mg-Al are on the right. The two are linked via the reaction 
23Na(p, γ)24Mg. 

 
There are three stable isotopes of Ne, being 20Ne, 21Ne and 22Ne. Of these, the lighter 
isotope is by far the most common and it takes only a tiny decrease in this isotope to 
provide a significant increase in the amount of the heavier isotopes, especially 21Ne. 
Further burning destroys 22Ne via proton capture to produce 23Na. The details depend on 
the burning temperature and whether you burn until all the hydrogen is consumed, for 
example. We can summarize by saying the 21Ne is produced for temperatures below 
about 40 million K but destroyed at higher temperatures. A modest amount of 23Na is 
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produced at most temperatures through the destruction of 22Ne. 
  

Species Effect Note 
1H destroyed  

4He produced  
20Ne destroyed by a negligible amount  
21Ne produced below 40 million K  

 destroyed above 40 million K  
22Ne destroyed partially  
23Na produced  

 
Table 3. The main results of the Ne-Na reactions. 

 
2.1.4. The Mg-Al Chain 
 
This is shown in the right hand side of Figure 3. It is fed by proton captures on 23Na, 
which provides a link to the Ne-Na reactions. For temperature below about 1GK, which 
covers all non-explosive hydrogen burning situations, the 27Al(p,γ)28Si reaction 
dominates over the 27Al(p,α)24Mg reaction, so the result is a chain rather than a cycle.  
 
We meet a new complication here. The isotope 26Al has an isomeric state that is not in 
thermal equilibrium with the ground state at the temperatures of most hydrogen burning. 
Hence it must be considered as a separate species in detailed calculations. The entire 
chain is comprised of the three stable isotopes of magnesium (the most common being 
24Mg) and two isotopes of aluminum, the stable 27Al and the unstable 26Al, with a half-
life of some 700,000 years.  
 
The main results of the Mg-Al chain are that significant increases in the amount of 26Mg 
can be produced with only small decreases of 25Mg. Quite high temperatures are needed 
( 60T >  million K) to decrease the 24Mg content and to produce the aluminum isotopes. 
Note that since 26Al is unstable, there is initially none present so the increase is quite 
noticeable. Of course, any 26Al produced will later β -decay into 26Mg.  
 

Species Effect Note 
1H destroyed  

4He produced  
24Mg destroyed by a small amount  

  above 60 million K  
25Mg destroyed  
26Mg produced in small amounts  
26Al produced radioactive; initially none, decays to 26Mg  
27Al produced in small amounts a high T  

 
Table 4. The main results of the Mg-Al chain. 
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2.2. Helium Burning 
 
Helium burning usually occurs after all of the hydrogen in the core has been exhausted 
during the earlier evolution (The exception is for stars composed purely of hydrogen 
and helium, who will experience hydrogen and helium burning simultaneously; these 
stars will not be considered further in this article.). Hence we will discuss helium 
burning with an initial composition appropriate to a gas that has undergone complete 
hydrogen burning. This means that the initial composition will be mostly helium (since 
all hydrogen has earlier burned into helium) but that the initial CNO nuclei will have 
been processed into mostly 14N nuclei by the actions of the CNO cycles. Thus 14N is the 
second most abundant species in such a region. There is also a small amount of 13C 
from the CNO cycles. Hence the main phase of helium burning begins with helium or 
14N as the initial seeds, but with 13C providing a complication we must deal with. 
 
2.2.1. Pure Helium Burning 
 
If the initial gas is pure helium then we have helium as the initial seed for the 
subsequent reactions. In this case the single most important reaction is the triple-α  
reaction which we write as  
 
4 12He(2α,γ) C . 
 
Here we have effectively combined three 4He nuclei into one 12C nucleus. Once a 
reasonable amount of 12C is produced then a competing reaction becomes  
 
12 16C(α,γ) O  
 
which has a notoriously uncertain reaction rate, although this uncertainty has dropped in 
recent years due to the combined work of many people. Analogously, once some 16O is 
present then  
 
16 20O(α,γ) Ne  
 
can produce 20Ne. 
 
- 
- 
- 
 

 
TO ACCESS ALL THE 41 PAGES OF THIS CHAPTER,  
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