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Summary 

 

The term “Space Manifold Dynamics" (SMD) is used to describe the applications of 

Dynamical Systems methods to spacecraft mission analysis and design. Since the late 

1980’s, the application of tools coming from the general field of Dynamical Systems 

has gone from a mathematical curiosity in the space community to become a serious 

methodology for the design and operation of real space missions. Missions such as 

Gaia, Genesis, GRAIL, Herschel, MAP, Plank, and many others, are all using 

Dynamical Systems concepts for their design.  

 

The Space Manifold Dynamics approach to mission analysis problems allows the 

analysis of the natural dynamics of the problem in a systematic and efficient way, and 

can be used to solve questions such as: the description of the phase space in a large 

vicinity of the collinear Lagrangian points, the analytical computation of libration point 

orbits (LPO) using Lindstedt-Poincaré methods, the design of optimal station-keeping 

strategies for LPOs, the determination of low-energy and interplanetary transfers, the 

computation of transfers between libration point orbits, or the design of eclipse 

avoidance strategies; in all the cases fitting the required mission constraints.  

 

In this paper some of the main tools of the Dynamical Systems theory used in 

Astrodynamics are presented, as well as their application to some particular problems of 
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the above list. Nevertheless, many technical details are not given and must be found in 

the references.  

 

1. Introduction 

 

For the design of space missions to libration point orbits, the Circular Restricted Three–

Body Problem (CRTBP) is the natural and simplest model to start with. Dynamical 

Systems theory has been extensively used in the study of the CRTBP, for instance to get 

a detailed analysis of the dynamics in the vicinity of its equilibrium points, where some 

of the most dynamical complications occur. Its qualitative and quantitative procedures 

allow us to obtain an accurate picture of the evolution of the states of the system. Next 

we briefly introduce and discuss the main features of the problem.  

 

The CRTBP describes the motion of a massless particle under the gravitational 

influence of two point masses 1m  and 2m , called primaries, in circular motion around 

their common center of mass. It is usual to consider a synodic reference system, with 

origin at the center of mass and rotating with the same angular velocity than the 

primaries, so that they are fixed in this system. The CRTBP has a Hamiltonian structure, 

with Hamiltonian function H , that in terms of the synodic position ( , ,x y z ) and 

momentum ( , ,x y zp p p ) of the massless particle is given by  

 

 2 2 2

1 2

1 1
,

2
x y z y xH p p p xp yp

r r

 
        

 

where  2 1 2m m m   , and 1r  and 2r  the distances from the massless particle to both 

primaries. The constant value of the Hamiltonian over each solution, h , is called the 

energy of the orbit.  

 

In the synodical reference system there exist five equilibrium (or libration) points (see 

Figure 1). Three of them, the collinear ones, are on the line joining the primaries and 

are usually denoted by 1L , 2L  and 3L , where 1L  is between the two primaries, 2L  is at 

the left-hand side of the small one (which is assumed to be on the negative x -axis), and 

3L  is at the right-hand side of the big one (on the positive x -axis). The last two 

equilibrium points, 4L  and 5L , called triangular points, form equilateral triangles with 

the primaries. Around the triangular equilibrium points, there are large regions with 

good stability properties that could be used as parking regions at which almost no 

station keeping is needed. 

 

From a dynamical point of view, the collinear libration points behave as the product of 

two centers by a saddle. According to Lyapunov’s center theorem, each equilibrium 

point gives rise to two one–parametric families of periodic orbits, spanning a 2D 

manifold tangent at the equilibrium point to the real and imaginary parts of the 

eigenvectors with eigenvalues   i 1    . These two families are known as the planar 

and vertical Lyapunov family, respectively, of periodic orbits.  
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Figure 1. Left: The synodic reference frame of the CRTBP using adimensional units. 

Right: The five equilibrium points associated with the problem. 

 

 
 

Figure 2. Left: A planar (blue) and a vertical (red) Lyapunov orbit, and a Lissajous orbit 

(green) for a fixed energy value around the equilibrium point 1L . Right: Nominal halo 

orbit (pink) and foreseen transfer orbit for the James Webb Space Telescope (from 

http:// ngsc.gsfc.nasa.gov /). 

 

When we consider all the energy levels, the center   center part gives rise to four-

dimensional central manifolds around these equilibria. Among the solutions in the 

central manifold, the quasi-periodic Lissajous orbits are those associated with two-

dimensional tori. For a fixed energy level, these solutions can be viewed as families of 

quasi-periodic solutions that “connect” the planar and the vertical Lyapunov orbit at the 

same energy level (see Figure 2, left).  

 

Following the families of Lyapunov periodic orbits, as the energy h  increases, the 

linear stability of the orbits change and there appear bifurcating orbits where other 

families of periodic orbits are born. At the first bifurcation orbit of the family of planar 

Lyapunov orbits, there appear two families of 3-dimensional periodic orbits, symmetric 

with respect the 0y   plane, that are called Halo orbits (see Figure 2 right).  
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Due to the hyperbolic character of the collinear equilibrium points, the invariant objects 

around them inherit the hyperbolicity, at least for values of the energy close to that of 

each equilibrium. This means that the orbits (periodic and quasi-periodic) in the central 

manifold are unstable and have a stable and an unstable invariant manifold associated. 

For the periodic orbits, the invariant manifolds look like 2D tubes filled with trajectories 

tending forwards (for the unstable) and backwards (for the stable) in time to the 

corresponding orbit. In the case of the Lissajous orbits, these invariant manifolds 

increase in one unit their dimension. 

 

The stable invariant manifolds allow an efficient determination of transfer trajectories 

from the Earth to the libration point orbits of the Sun–Earth system, as well as the 

emergence of other trajectory and mission options. Furthermore, the intersections 

between the invariant manifolds give rise to homoclinic or heteroclinic connections that, 

in principle, allow to construct complicated itineraries between neighborhoods of two 

equilibrium points. 

 

In connection with the computation of transfer orbits, it often appears in the literature 

the so called weak stability boundary (WSB), introduced by E. Belbruno after the rescue 

of the Hiten spacecraft. Although the WSB has not a precise definition, it can be seen as 

a boundary set in the phase space between stable and unstable motion relative to the 

second primary. After the work in the last decade of Koon, Gómez and Belbruno, it has 

been shown that the WSB, as well as its “rescue” role in missions like Hiten, can be 

completely explained in terms of the invariant hyperbolic manifolds associated to the 

central manifolds of the 1L  and 2L  libration points.  

 

2. Spacecraft Missions to Libration Point Orbits 

 

The orbits around the libration points, called libration point orbits, LPO, have unique 

characteristics suitable for performing different kinds of spacecraft missions. Among 

the most relevant characteristics, one can mention:  

 

 In the Earth–Sun system, they are easy and inexpensive to reach from Earth.  

 In the Earth–Sun system, they provide good observation sites, mainly solar 

observatories at 1L  and astronomy observatories at 2L . Near 2L  more than half of 

the entire celestial sphere is available at all times.  

 Since the libration orbits around the 1L  and 2L  points of the Sun–Earth system 

always remain close to the Earth, at a distance of roughly 1.5 million km, and have a 

near-constant geometry as seen from the Earth, the communications system is 

simple.  

 The 2L  environment of the Sun–Earth system is highly favorable for non-cryogenic 

missions requiring great thermal stability, suitable for highly precise visible light 

telescopes.  

 The libration orbits around the 2L  point of the Earth–Moon system, can be used to 

establish a permanent communications link between the Earth and the hidden part of 

the Moon, as was suggested by A.C. Clark in 1950 and Farquhar in 1968.  

 The LPO’s can provide ballistic planetary captures, such as for the one used by the 
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Hiten spacecraft.  

 The heteroclinic connections between libration point orbits provide Earth transfer 

and return trajectories, such as the one used for the Genesis mission or by the 

Artemis-P1 spacecraft.  

 The libration point orbits provide interplanetary transport which can be exploited in 

the Jovian and Saturn systems to design a low energy cost mission to tour several of 

their moons (Petit Grand Tour mission).  

 Formation flight, with a rigid shape, is possible using libration point orbits.  

 

An example of a mission visiting libration points’ neighborhoods is Genesis, launched 

in 2001 by NASA to study the solar wind and bringing back a sample to the Earth. The 

trajectory started travelling to the 1L  Sun-Earth point, resembled several times a halo 

orbit, and finally was inserted in a trajectory with a loop around 2L  before being 

captured back to Earth (see Figure 3 left). Another example is the trajectory of the 

Artemis-P1 spacecraft, devoted to study magnetism and how the solar wind flows past 

the Moon and tries to fill in the vacuum on the other side. This spacecraft follows a 

heteroclinic connection between orbits around the two Lagrangian points 1L  and 2L  of 

the Earth–Moon system (see Figure 3 right). 

 

 
 

Figure 3. Left: Trajectory of the Genesis spacecraft. Right: Trajectory of the Artemis-P1 

spacecraft following a heteroclinic connection in the Earth-Moon system. (From 

NASA’s official web page). 

 

Many more missions (past, current or future) use the above mentioned properties. 

Among the most relevant ones we can mention: ISEE-3 (1978), WIND (1994), SOHO 

(1996), ACE (1997), Herschel (2008), Plank (2008), Chang’e 2 (2010), GRAIL (2011), 

GAIA (2012), DARWIN, Constellation X, LISA Pathfinder, SAFIR, TPF, Triana, 

JWST (previously known as NGST), ...  

 

2.1. LPO In Lunar and Exploration Missions 

 

In the past few years there has been a renewed interest in the exploration of the Moon 

and, in particular, in its far side. Among the current missions to the Moon there is the 

previously mentioned Artemis, an extended mission of a constellation of five 

spacecrafts, two of which were moved into a lunar orbit, and GRAIL that will produce a 

high-resolution map of the Moon’s gravitational field. GRAIL is composed by two 

small probes orbiting the Moon, which made use of a low-energy lunar transfer via the 
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Sun-Earth Lagrange point 1L  in order to reduce the fuel requirements and to slow down 

the velocity at lunar arrival.  

 

Furthermore, the possibility of performing a temporary ballistic capture allowed us to 

keep the 40N engines available to the spacecraft low-cost bus: such a moderate thrust 

would have not allowed us to perform the classical one-shot Lunar Orbit Insertion (LOI) 

maneuver foreseen by a Hohmann-like transfer; thus the space manifold dynamics 

transfer removes the “single-point failure” character of the classical LOI. 

 

Space manifold dynamics tools are currently used to design lunar missions, such as the 

preceding ones, with a significant energy ( v ) saving factor with respect to classical 

two-body problem approach. Departing from the Earth, it is possible to perform a 

ballistic capture in an elliptic orbit around the Moon using the manifolds associated to 

some particular libration point orbits.  

 

The resulting transfer has an important saving at the lunar injection maneuver (up to 

40% in missions like LunarSat, but with an additional mission duration. It must be also 

said that this gain vanishes when a low-altitude circular orbit (such as those used for 

manned missions, remote sensing or gravimetry) must be eventually achieved. Another 

example using these tools is a study of how to launch three small spacecraft on-board 

the same launch vehicle and send them to different orbits around the Moon with no 

significant difference in their v  budgets (Marson et al, 2010). 

 

It is known that the design of interplanetary transfers from the Earth to the planets can 

be optimised, from the energy point of view, by incorporating lunar swing-byes at the 

departure from the Earth sphere of influence (see Figure 4). Those transfers can also 

incorporate trajectory paths through the WSB region and in this way save up to 150 kg 

of propellant to missions like Mars Express, but again with the penalty of a larger 

transfer duration.  

 

The use of libration point dynamics has been also considered in the design to inner 

planet capture missions, like Bepi Colombo to Mercury, Venus Express to Venus and 

Mars Express to Mars. In this case, the energy saving is low, but the mission design is 

highly flexible compared with the classical patched conics approach. In particular, the 

use of classical procedures imposes a given argument of pericenter and right ascension 

of ascending node of the resulting planetary orbit, while the use of LPO techniques give 

practically a full freedom to select above parameters, with a not too large penalty in the 

mission duration. From a scientific point of view, the capacity to choose freely the 

orbital plane orientation gives an extraordinary increase in the final outcome of the 

mission. 

 

A similar conclusion can be obtained for the application of SMD techniques to the outer 

planet capture (Jupiter, Saturn, Uranus, Neptune). However, if a tour of giant planet 

natural moons (Jupiter tour) is designed, the use of SMD techniques gives again an 

important energy saving factor in addition to the high flexibility.  

 



CELESTIAL MECHANICS - Space Manifold Dynamics – Gerard Gómez  Muntané  and Esther Barrabés Vera  
 

©Encyclopedia of Life Support Systems (EOLSS) 

 
 

Figure 4. Example of a triple lunar swing-by Earth departure technique (obtained from 

Space Manifold Dynamics. Novel Spaceways for Science and Exploration) 

 

2.2. Mission Design around Libration Points 

 

The mission design of satellite flying orbits around libration points includes the 

consideration of the following aspects: 

  

1. Definition of a nominal trajectory: the first step is the selection of the environment 

(the two- body system: Earth-Sun, Earth-Moon), the libration point (collinear L1, 

L2, L3 or triangular points L4 or L5) and the type of trajectory (Halo, Lissajous,...)  

2. Transfer trajectories to the selected nominal orbit from initial launch conditions or 

parking orbits.  

3. Launch window calculations taking into account the main mission constraints 

imposed for scientific or technical reasons.  

4. Navigation of transfer and nominal trajectories: computation of the required 

trajectory correction maneuvers to correct launch injection dispersion, orbit 

determination errors and maneuvers mechanisation errors.  

5. Orbit maintenance: strategies to keep the spacecraft in a neighborhood of the 

selected nominal path.  

6. Formation flying techniques: new astronomy missions to LPO imposes the 

formation flying of several probes to implement interferometric techniques, the 

design of the formation architecture, the deployment, the tight control and the 

collision avoidance techniques must be defined.  

7. Eclipse avoidance: most of the missions flying LPO orbits must avoid eclipses in 

order to continue nominal operations.  

8. Transfer between libration point orbits: in some cases there is a need to transfer the 
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probe from one initial LPO orbit to another larger or smaller amplitude trajectory.  

 

The dynamical systems approach provides solutions to all the above items as will be 

shown in the sections that follow.  

 

- 

- 

- 
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