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Summary 
 

To determine the orbit of a solar system body means to compute its position and 

velocity at a certain time using the observations of the body, e.g. right ascension and 

declination if we use an optical telescope. This allows us to compute ephemerides and 

predict the position of the body at different times.  

 

This branch of Celestial Mechanics has attracted the interest of several scientists over 

the last centuries. However, the ongoing improvements of the observational 

technologies have set up new orbit determination problems in the recent years: this is 

partly due to the availability of different observables (e.g. the range, with radar 

telescopes), but also to the huge amount of data that can be collected. For these reasons 

scientists have been induced to think about new algorithms to compute orbits.  

 

In this chapter we present a review of some orbit determination methods, with particular 

care about the computation of preliminary orbits. Here we include both classical 

methods, due to Gauss and Laplace, and very recent ones, which are suitable for the sets 

of optical observations made with modern telescopes. Also the problem of alternative 

solutions is considered: we describe some results on the geometric characterization of 

the number of preliminary solutions. The last part of this chapter is devoted to the 

linkage of short arcs, that is an identification problem appearing with the very large 

amount of observations that can be made with modern instruments. 

 

1. Introduction 

 

The determination of the orbits of the solar system bodies is an important branch of 

Celestial Mechanics and has attracted the interest of several scientists over the last 
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centuries. The main problem can be formulated as follows: given a set of observable 

quantities of a celestial body, made at different epochs (e.g. the angular positions of an 

asteroid on the celestial sphere), compute the position and velocity of the body at the 

average time of the observations, so that it is possible to predict the position of the body 

in the future. The observations of a celestial body are affected by errors, e.g. due to the 

instruments, or to atmospheric effects. It is necessary to take into account the effect of 

these errors in an orbit determination procedure.  

 

Here is a short (and incomplete) list of scientists who made important contributions to 

this field: E. Halley, A. J. Lexell, J. L. Lagrange, A. M. Legendre, F. F. Tisserand, P. S. 

De Laplace, C. F. Gauss, O. Mossotti, H. Poincaré, C. W. L. Charlier, A. Leuschner.  

 

A key event for the development of orbit determination methods was the discovery of 

Ceres, the first main belt (The main belt asteroids (MBAs) are located between the 

orbits of Mars and Jupiter.) asteroid, by Giuseppe Piazzi (Observatory of Palermo, 

January 1, 1801). He could follow up Ceres in the sky for about 1 month, collecting 

about 20 observations. Then a problem was set up for the scientists of that epoch: to 

predict when and in which part of the sky Ceres could be observed again. Ceres was 

recovered one year later by H. W. Olbers and F. Von Zach, following the suggestions of 

C. F. Gauss, who among many other scientific interests, was attracted by astronomical 

problems and became the director of the Göttingen observatory in 1807.  

 

Gauss’ method consists in two steps: compute a preliminary orbit (see Section 2), then 

apply an iterative method to obtain a solution of a least squares fit (see Section 3). 

Unfortunately, there can be more than one preliminary orbit: this problem is addressed 

in Section 4.  

 

At the beginning of the XIX century an asteroid was typically observed only once per 

night; moreover the number of objects that could be observed was much smaller. The 

observations at the present days are different: we can detect many more asteroids and 

we compare images of the same field taken a few minutes apart to search for moving 

objects. In Figure 1 we show three images of the detection of an asteroid in September 

2002.  

 

 
Figure 1. Three images showing the detection of an asteroid (encircled in the figures) 

during the night of September 3, 2002: the time interval between two consecutive 

images is 20 minutes. Courtesy of F. Bernardi. 
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Thus today there is also an identification problem, that is to join together sets of 

observations taken in different nights as belonging to the same observed object. The 

different cases occurring in the identification are described in Sections 5, 6.  

 

There is a broad literature about orbit determination: here we restrict the exposition to 

the most famous classical methods and to some recent achievements concerning objects 

orbiting around the Sun (e.g. asteroids), observed with optical instruments. 

 

2. Classical Methods of Preliminary Orbit Determination 

 

We illustrate the two classical methods by Laplace and by Gauss to compute a 

preliminary orbit of a celestial body orbiting around the Sun and observed from the 

Earth. 

 

2.1. Laplace’s Method 

 

Assume we have the observations  ,i i   of a solar system body at times it , 1 ,i m  

3m  ; then we can interpolate for , , ,     at a mean time t , where the dots indicate 

the time derivatives. To obtain an orbit we have to compute the radial distance   and 

the radial velocity   at the same time t . 

 

Let ˆρ e  be the geocentric position vector of the observed body, with   ρ  and 

 ˆ cos cos ,cos sin ,sin     e , where ,   are the right ascension and declination. 

We denote by ˆqq q  the heliocentric position of the center of the Earth, with q  q  

and by r q +ρ  the heliocentric position of the body.  

 

We use the arc length s  to parameterize the motion: s  is related to the time t  by  

 

 
def

2 2cos   proper motion
ds

dt
      . 

 

We introduce the moving orthonormal basis  

 

ˆ
ˆ ˆ ˆ ˆ ˆ, , .v n vd

ds


   

e
e e e e e  (1) 

 

The relation  

 

 ̂
ˆ ˆ

v
nd

ds

   
e

e e  

 

defines the geodesic curvature  . The second derivative of   with respect to t  can be 

written as  
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     
2

2 2

2
ˆ ˆ ˆ2 v nd

dt

         
ρ

e e e . 

 

On the other hand, assuming the asteroid and the Earth move on Keplerian orbits, we 

have  

 

 
2 2

2 2 3 3

d d

dt dt r q

  
    

ρ
r q r q , 

 

with r  r  and  ,   the masses of the Sun and of the Earth respectively.  

 

Neglecting the mass of the Earth and projecting the equation of motion onto ˆn
e  at time 

t  we obtain the dynamical equation of Laplace’s method  

 

 

3 2 3

3
1 with ,

ˆ ˆn

q q

q r

  


  

q e
       (2) 

 

where ˆ ˆ, , , , , ,nq r  q e  denote the values of these quantities at time t .  

 

In Eq. (2)   and r  are unknown, while the other quantities can be computed by 

interpolation. Using (2) and the geometric equation  

 
2 2 2 2 cosr q q    ,        (3) 

 

where  cos q q ρ , we can write a polynomial equation of degree eight for r  at 

time t  by eliminating the geocentric distance:  

 

   2 8 2 2 6 5 3 82 cos 1 2 cos 1 0.r q r q r q          (4) 

 

The occurrence of alternative solutions in Eqs. (2), (3) is discussed in Section 1.  

 

The projection of the equations of motion on ˆv
e  gives  

 

  3 3

1 1
ˆ2 .v

q r
  

 
    

 
q e        (5) 

 

We can use Eq. (5) to compute   from the values of ,r   found by (4) and (2).  

 

2.2. Gauss’ Method 

 

Assume we have three observations  ,i i  , 1,2,3i   of a solar system body at times 
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it , with 1 2 3t t t  . Let ,i ir ρ  denote the heliocentric and topocentric positions 

respectively of the body, and let iq  be the heliocentric position of the observer. Gauss’ 

method uses the heliocentric positions  

 

1,2,3i i i i r ρ q .        (6) 

 

We assume that ,1 , 3i jt t i j   , is much smaller than the period of the orbit and 

write  t  for the order of magnitude of the time differences.  

 

From the coplanarity condition we have  

 

1 1 2 3 3 0   r r r          (7) 

 

for 1 3,   . The vector product of both members of (7) with , 1,3i i r  and the fact 

that the vectors ,i j i j r r  have all the same orientation as h hc  r r , 1,2,3h   

implies  

 

2 3 1 2
1 3

1 3 1 3

, 
   

 
   

r r c r r c

r r c r r c
. 

 

Let ˆ
i i i

ρ e , 1,2,3i  . From the scalar product of 1 3
ˆ ˆ e e  with both members of (7), 

using (6), we obtain  

 

 2 1 1 2 3 31 2 3 1 3
ˆ ˆ ˆ ˆ ˆ             
 
e e e e e q q q .     (8) 

 

The differences 2i r r , 1,3i  , are expanded in powers of  ij i jt t t t     by the 

,f g  series formalism; thus 2 2i i if g r r r , with  

 

   
2 2

3 42 2
23 3

2 2

1 , 1
2 6

i i
i i i

t t
f t g t t

r r

  
         

 

.   (9) 

 

Then 2i ig  r r c ,  1 3 1 3 3 1f g f g  r r c  and  

 

3 1
1 3

1 3 3 1 1 3 3 1

,
g g

f g f g f g f g
 


 

 
,      (10) 

 

 
2

431
1 3 3 1 31 3

2

1 .
6

t
f g f g t t

r

 
      

 

      (11) 

 

Using (9) and (11) in (10) we obtain  
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   2 2 332
1 31 323

31 2

1
6

t
t t t

t r




 
     

 

,      (12) 

 

   2 2 321
3 31 213

31 2

1 .
6

t
t t t

t r




 
     

 

      (13) 

 

Let 1 2 3
ˆ ˆ ˆV     e e e . By substituting (12), (13) into (8), using relations 

 2 2
31 32 21 31 32t t t t t    and  2 2

31 21 32 31 21t t t t t   , we can write  

 

 

     

2 31 32 1 31 2 21 31 3

4
32 21 31 32 1 32 21 31 21 31 3 3

2

ˆ ˆ

ˆ ˆ
6

V t t t t

t t t t t t t t t
r

 

 





     

 
          

 

e e q q q

e e q q
   (14) 

 

If the  4t  terms are neglected, the coefficient of 3
21 r  in (14) is  

 

     1 3 32 21 31 32 1 31 21 31 3
ˆ ˆ,

6
B t t t t t t 

       q q e e q q .    (15) 

 

Then multiply (14) by  3
2 1 3,q B q q  to obtain  

 

 

 

 

3
1 2 332 31 2

2 3
1 3 1 32

, ,

, ,

AV t q
q

B Br


  

q q q

q q q q
, 

 

where  

 

   3
1 2 3 2 32 1 31 2 21 31 3

ˆ ˆ, ,A q t t t     q q q e e q q q . 

 

Setting  

 

 

 

 

4
1 2 331 2

1 3 1 3

, ,
,

, ,

AVt q

B B
  

q q q

q q q q
;     (16) 

 

we obtain the dynamical equation of Gauss’ method:  

 
3

2 2

3
2 2

q

q r


   .         (17) 

 

After the possible values for 2r  have been found by (17) and by the geometric equation  
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2 2 2
2 2 2 2 2 22 cosr q q    ,        (18) 

 

then the velocity vector 2r  can be computed, e.g. from Gibbs’ formulas.  

 

The occurrence of alternative solutions of Eqs. (17), (18) is discussed in Section 2.  

 

We observe that in his original formulation Gauss used different quantities as 

unknowns, whose values could be improved by an iterative procedure (today called 

Gauss map).  

 

3. Least Squares Orbits 

 

We consider the differential equation  

 

 ,
d

t
dt


y

y, μ           (19) 

 

giving the state py  of the system at time t  (e.g. 6p   if y  is a vector of orbital 

elements). Here pμ  are some constants, called dynamical parameters.  

 

The integral flow, solution of (19) for initial data 0y  at time 0t , is denoted by 

 00
,t

t y μ . 

 

We also introduce the observation function  

 

   1, , , , , , 1k j jR R R R t j k  R y ν  

 

depending on the state y  of the system at time t , and on some constants pν , called 

kinematical parameters. Moreover we define the prediction function  tr  as the 

composition of the integral flow with the observation function:  

 

    00
, , ,t

tt tr R y μ ν . 

 

These functions gives a prediction for a specific observation at time t . 

 

We can group the multidimensional data and predictions into two vectors. For example, 

assume the available observations at time j  are the right ascension j  and the 

declination j , for 1, ,j h . Then 

 

   

   

2 1 12 1

2 1 2

2 2 2

, 2, , , .
j jj j

j j j

j j j j

r t rr
m kh k t t

r r t r




 





  
     

   

 with 
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components ir ,  ir t  and define the vector of the residuals  

 

   1 , , 1 .m i i ir r t i m     ξ  

 

- 

- 

- 
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