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Summary 

Seven Archaean cratonic nuclei characterized by granite-greenstone terrains form the 
foundation of Africa. During the Neoarchean and Paleoproterozoic these Archean nuclei 
merged into three major cratons referred to as the West Africa, Central Africa (Congo-
Tanzania) and Southern Africa (Zimbabwe-Kaapvaal) cratons.  
 
The Paleoproterozoic geology of the African Plate is dominated by sedimentation, 
volcanism, and tectonism between 2.3 and 1.8 Ga. These events are collectively known 
as the Eburnian orogeny and have been recognized in the Southern, Central and West 
Africa cratons.  
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The worldwide 1.35-0.9 Ga cascade of continental collisions that constructed the 
supercontinent Rodinia is known in Africa as the Kibaran orogeny. Effects of this can 
be found along the margins of the Central and Southern Africa Cratons. Kibaran events 
did not affect the West African Craton. 
 
The break-up of Rodinia at 0.85 Ga led to a fan-shaped aggregation of pre-Gondwana 
continental blocks including East Gondwana, West Gondwana and the intervening 
African cratonic blocks. These blocks were separated by oceanic basins, which were 
consumed and closed between 0.85-0.55 Ga during events referred to as the Pan-African 
Orogeny. 
By 0.55 Ga the Gondwana Supercontinent had formed with Africa at its center. For the 
next 350 Ma this continent remained in existence and Africa only experienced 
sedimentation along the Gondwana margin or in intra-continental rift-sag basins. 
Orogenic activity during this period was limited to the NW and S extremities of the 
continent. From the late Jurassic onwards, Gondwana rifted resulting in the African 
plate as we now know it, with most tectonic activity controlled by extension and hot 
spot activity. 
 
1. Introduction 
 
The African continent preserves evidence for major crust-forming events dating back to 
3.8 Ga. These events represent cycles of continental break-up and growth, which have 
been recognized worldwide and can be largely explained in a plate-tectonic context, 
within the confines of partly overlapping Wilson cycles. In Africa the main orogenic 
episodes are shown in Table 1. 

 
Orogeny Age Main outcome 

Paleoarchean 3.55-
3.15 Ga 

Formation of early Archean cratonic cores 
(Kaapvaal, Tokwe) 

Mesoarchean 3.15-
2.75 Ga 

Accretionary growth of Kaapvaal, Zimbabwe, 
Congo, Tanzania cratons and the Man and Reguibat 
shields 

Neoarchean 2.75-
2.55 Ga 

Stabilisation of Kaapvaal, Zimbabwe, Congo, 
Tanzania cratons and the Man and Reguibat shields; 
merging of Kaapvaal and Zimbabwe cratons as 
Southern Africa Craton 

Eburnian 2.2-1.8 
Ga 

Growth of the West Africa Craton along an active 
accretionary margin (Birrimian). Merging of the 
Congo and Tanzania cratons in the Central Africa 
Craton. Passive margin development and orogenesis 
along the W margin of Central and Southern Africa 
cratons.  

Kibaran 1.4-0.85 
Ga 

Merging of Southern and Central Africa cratons as 
part of the Rodinia supercontinent 

Pan-African 0.85-0.5 
Ga 

Merging of all cratonic fragments to form the 
Gondwana supercontinent to which Africa is central 

Hercynian 0.45- Limited collision and tectonic activity along the NW 
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0.25 Ga and S margins of the African plate 
Alpine 0.12-0 

Ga 
Subduction of African plate under Eurasia and 
formation of the Atlas mountains 

 
Table 1: Summary of the main orogenic episodes in Africa 

All figures with this text have been largely adapated from Choubert & Faure-Muret 
(1990). 

 
2. The Archean between 3800-2550 MA: Formation of Cratons 
 
Seven major cratonic nuclei form the foundation of Africa: the Kaapvaal craton, the 
Zimbabwe Craton, the Tanzania Craton, the Congo Craton, the Man Shield, the 
Reguibat Shield and the elusive (largely covered and reworked) East Sahara or Nile 
Craton. During the Neoarchean and Paleoproterozoic these Archean nucleii merged into 
three major cratons which will be referred to as the West Africa, Central Africa (Congo-
Tanzania) and Southern Africa (Zimbabwe-Kaapvaal) cratons (de Wit and Ashwal, 
1997; Trompette, 1994; Thomas et al., 1993). Archean terranes in Africa are shown in 
Fig. 1. 

 

 
Figure 1: Archeaen and Paleoproterozoic (Ubendian) terranes (3800-1750 Ma) 
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2.1. The West Africa Craton 
 
The West Africa Craton (1.5 million km2 Archean; 3.0 million km2 Paleoproterozoic) in 
NW Africa consists of the Reguibat and (Leo-) Man Shields in the N and S of the 
craton, respectively, that are separated by the Neoproterozoic to Paleozoic Taoudeni 
basin. In both shields, Archean rocks are exposed in the western parts and separated 
from Paleoproterozoic rocks to the east by major shear zones, referred to as the 
Sassandra Fault in the Man Shield (Ivory Coast) and the Zednes Fault in the Reguibat 
Shield (Mauritania) (Attoh & Ekwueme, 1997).  
 
Age dating and paleomagnetic reconstructions suggest that the West Africa Craton and 
the Guyana Shield (Amazonian Craton) in South America formed a single domain in the 
Palaeoproterozoic. A possible Archean suture may be found along the SW margin of the 
craton (Sierra Leone, Liberia) where a linear belt of Archean granulite-facies 
supracrustal and meta-igneous rocks (Kasila Group) occurs, marked by a shallowly W-
dipping mylonite zone. This area has been overprinted by deformation related to the 
Pan-African Rokelide Belt (Williams & Culver, 1988). 
 
The Archean rocks of the Reguibat Shield include TTG-type migmatitic orthogneiss 
and metavolcanic and metasedimentary belts with ironstones, marbles, ultramafic rock, 
and amphibolite (e.g. Tasiast belt, Amsaga area in Mauritania), greywacke and pelite. 
The gneisses have ages of 3.52 Ga, 3.42 Ga and 2.84 Ga and are intruded by 2.99-2.83 
Ga charnockitic gneiss. The shield has been affected at 2.74 Ga by polyphase folding 
and high-grade metamorphism followed by the emplacement of late-tectonic granites at 
2.73-2.72 Ga. Retrograde amphibolite-grade mineral assemblages occur near the main 
shear zones (Attoh & Ekwueme, 1997; Potrel et al., 1998).  
 
The oldest component of the Man Shield consists of banded TTG gneiss (> 3.0 Ga) 
overlain by greenstone belts with (ultra)mafic metavolcanics, banded ironstone, phyllite, 
greywacke and quartzite (e.g. Sula and Nimini belts in Sierra Leone) and intruded by 
2.97-2.78 Ga granites (Attoh & Ekwueme, 1997). 
 
2.2. The Central Africa (Congo-Tanzania) Craton 
 
The Congo-Tanzania Craton is a region of pre-2.5 Ga continental crust, located in 
central Africa and includes the Tanzania and Congo cratons, linked by the Archean 
Uganda Basement Gneiss and West Nile Complex (> 2.8 Ga Kilo-Moto Terrane). 
 
The Tanzania Craton (0.5 million km2; Tanzania, SW Kenya, SE Uganda) consists of 
the >2.9 Ga Dodoma Terrane in the south and the younger Lake Victoria Terrane in the 
north. The Dodoma Terrane comprises high-grade TTG-type orthogneiss, mafic-
ultramafic rocks, quartzite and phyllite.  
 
The Lake Victoria Terrane consists of tectonized greenstone belts intruded by large 
amounts of granite. The greenstones consist of 2.81-2.70 Ga bimodal volcanics and 
flysch (Nyanzian Group) overlain by 2.68-2.63 Ga volcanics and clastic sediments 
(Nzega and Kakamega Groups). Basalt, andesite, shoshonitic rhyolite and conglomerate 
(Rongo Group) unconformably overlie the older sequences. Granite was emplaced 
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during several stages at 2.72-2.68 Ga (early-syntectonic), 2.64 Ga (late-syntectonic) and 
2.58-2.56 Ga (the post tectonic Western Granite Complex). A 2.53 Ga platform 
sequence was deposited on the NE and N parts of the craton (Kisii, Buganda Groups) 
(Borg & Krogh, 1999; Pinna et al., 1996, 2000). 
 
Archean outcrops in the Congo Craton include the Chaillu - Gabon blocks (SW 
Cameroon, Equatorial Guinea, Gabon, Congo), the Zaire Block (NE DR Congo, W 
Uganda), the Angola Block and the Kasai Block (NE Angola, S DR Congo). 
 
The Chaillu - Gabon blocks contain 3.19-3.12 Ga granite-greenstones deformed and 
metamorphosed at high metamorphic grades at ~ 3.15 Ga. They are intruded by 2.95-
2.85 Ga calc-alkaline tonalites and granites, associated with intermediate to felsic 
volcanics (2.97-2.94 Ga), metamorphosed at low metamorphic grades. Ultrabasic rocks 
intruded at 2.78 Ga, followed by late-orogenic granites between 2.8-2.5 Ga before 
stabilization of the block (Feybesse et al., 1998).  
 
The Zaire Block can be divided into the Bomu (amphibolite-gneiss) Complex and 
Ganguan greenstone belts in the far W, the West Nile Complex in the N, and the Upper-
Zaire Granitoid Massif with Kibalian greenstone belts in the S. The Kibalian Group 
greenstones are thought to rest unconformably on older gneiss and consist of a mafic 
volcanic-dominated lower portion intruded by 2.8 Ga tonalite, and a bimodal volcano-
sedimentary upper sequence intruded by 2.45 Ga old granite, similar to greenstones 
found in the Tanzania Craton. The West Nile Complex consists of high-grade gneiss 
with remnant mafic greenstone segments. The gneiss complex can be traced across S 
Sudan and central Uganda into the Tanzania craton and may form a link (orogenic belt 
?) between both cratons. The > 3.0 Ga Ganguan Group greenstones are thought to rest 
unconformably on still older gneisses of the Bomu Complex. The Ganguan greenstones 
form distinct belts of slightly metamorphosed quartzite, slate, jaspilite, talc schist and 
dolerite. The 3.4-3.0 Ga Bomu Complex extends into the Central African Republic and 
is composed of migmatitic gneiss with mafic and metasedimentary schist inclusions. 
Deformation has been recorded at ~ 3.3-3.0 Ga and 3.0 Ga (Borg & Shackleton, 1997; 
Lavreau, 1982, 1984). 
 
The Archean of the Angola Block was largely reworked during the Eburnian event. 
Archean gneiss was metamorphosed at ~2.8 Ga and intruded by granite between 2.83-
2.60 Ga. They are covered by volcano-sedimentary rocks (Jamba Group in the N; 
Utende-Chela Supergroup in the S) of poorly constrained age (2.8-2.2 Ga). In the SW, 
Archean granite-greenstone terrains occur (de Carvalho, 1983). De Wit (2001, 
unpublished data) reports 3.5 and 2.7 Ga ages and a 2.0 Ga overprint, indicating that the 
Angola Block is more complicated than previously known. 
 
The Kasai Block consists of tonalitic gneiss and old granodiorite (3.5-3.3 Ga) 
associated with supracrustals, gabbro-norite-anorthosite complexes and amphibolite, 
metamorphosed at granulite facies around 2.8 Ga during emplacement of 2.9-2.8 Ga 
charnockite and 2.83 Ga granite. A second event is associated with widespread calc-
alkaline granite emplacement and migmatisation between 2.7-2.6 Ga. 
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2.3.  The Southern Africa Craton 

The Southern Africa Craton comprises the Zimbabwe Craton to the N and the Kaapvaal 
Craton to the S, merged across the high-grade gneisses of the Limpopo Belt. 
 
The 3.55-2.58 Ga Zimbabwe Craton (0.3 million km2, Zimbabwe, NE Botswana, W 
Mozambique) contains a 3.55-3.35 Ga, central gneissic nucleus (Tokwe Segment) 
affected by regional deformation (N-S grain) > 3.35 Ga. After it stabilized, ~3.0 Ga 
stable shelf sedimentation occurred along its W margin. Subsequent tectono-magmatic 
events added granite and greenstones including clastic and deep-water sediments at 
~2.9-2.8 Ga (Belingwean, Lower Bulawayan Groups) and ~2.72-2.64 Ga (Upper 
Bulawayan, Shamvaian Groups). Greenstone forming events are either explained in 
continental rift- or flood basalt settings with deposition on older basement, or in active 
continental margin settings involving subduction-accretion and back-arc rifting. 
Important Archean unconformities have been described at the base of greenstone 
sequences in the Belingwe greenstone belt (Wilson et al., 1995; Jelsma & Dirks, 2002). 
 
Thermal and isostatic stabilization of the craton occurred at 2.6 Ga with the 
emplacement of late-orogenic monzogranite (Chilimanzi Suite) followed by crustal 
relaxation, and emplacement of the Great Dyke layered mafic-ultramafic complex at 
2.58 Ga. A 2.62-2.56 Ga granulite terrane occurs along the N margin of the Zimbabwe 
Craton. The terrane represents Archean lower crust brought to the surface during 
Kibaran and Pan-African events in the adjacent Zambezi belt (Jelsma & Dirks, 2002). 
The Kaapvaal Craton (1.2 million km2, South Africa, Botswana, Lesotho, Swaziland) 
originated from an early nucleus that contains the Barberton greenstone belt, Natal 
Terrane and Ancient Gneiss Complex with the oldest known crustal fragment in Africa 
(Ngwane Gneiss, 3.64 Ga).  
 
In the Barberton greenstone belt, oceanic, 3.49-3.46 Ga (ultra)mafic volcanic and 
plutonic rocks experienced 3.45-3.42 Ga deformation-metamorphism and TTG-type 
plutonism as oceanic crust and 3.55-3.52 Ga tonalitic gneiss were obducted onto an 
active arc-trench-like terrain. An early continental margin may have formed to the S 
(3.4 Ga, Mkhondo-Mahamba Groups, Swaziland). At 3.3-3.2 Ga, renewed tectono-
magmatism resulted in crustal thickening with clastic sedimentation (Fig Tree-Moodies 
Groups), evolving to late strike-slip shear and post-tectonic granite emplacement 
between 3.15-3.07 Ga (Brandl & de Wit, 1997).  
 
By 3.1 Ga, a large part of the Kaapvaal Craton had stabilized and a thick volcano-
sedimentary pile accumulated on this proto-cratonic block. Along its N margin, the 
~3.2-2.97 Ga Pietersburg-Giyani and Murchison Terranes represent juvenile oceanic- 
and island-arc crust that accreted with the proto-craton between 3.2-2.8 Ga. West of the 
proto-craton, the ~3.1-2.9 Ga Amalia, Colesburg and Kraaipan Terranes accreted along 
the Colesberg Lineament (Brandl & de Wit, 1997; McCourt, S., 1995).  
 
The Zimbabwe and Kaapvaal cratons were juxtaposed at ~2.6 Ga across the ENE 
trending Limpopo Belt that is separated from the cratons by major thrusts (North 
Limpopo Thrust Zone in the N; Hout River Shear Zone in the S). The Limpopo Belt has 
been interpreted as an Archean collisional orogen and comprises the North Marginal 
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Zone (reworked Zimbabwe craton), Central Zone and South Marginal Zone (reworked 
Kaapvaal Craton). The marginal zones have been interpreted as metamorphosed deep-
crustal equivalents of granite-greenstones in the adjacent cratons. The Central Zone is 
separated from the marginal zones by the dextral Triangle Shear Zone to the north and 
the sinistral Palala shear zone to the south. The Central Zone preserves no evidence of 
greenstone precursors, but is characterized by platform sediments (provenance 3.8-3.3 
Ga) deposited on a basement of 3.25-3.17 Ga orthogneiss (Sand River gneiss). 
Deformation occurred at high-grades at ~3.2-3.1 Ga (Central Zone only), 2.65-2.55 Ga 
(collision) and 2.05-1.95 Ga (transpression). 
 
2.4. An Archean Passive Margin Sequence and Foreland Basin 
 
A large section of the Kaapvaal craton stabilized by 3.1 Ga, and acted as basement to 
the thick volcano-sedimentary sequences of the co-evolving (> 2.94 Ga) Pongola and 
(3.12-2.71 Ga) Witwatersrand basins. In the Witwatersrand basin, the sequence 
comprises the lowermost 3.12-3.07 Ga Dominion Group volcanics, overlain by the 
Witwatersrand Supergroup sediments. Sedimentation took place during two cycles, with 
rocks of the lower cycle forming on a passive continental margin.  
 
Sediments of the upper cycle are rich in gold and accumulated between 2.84-2.71 Ga in 
a foreland basin. Early rifting evolved to post-rift subsidence and flexural loading due to 
thrusting along the SE and NW margins of the basin. The evolution of the 
Witwatersrand Basin came to an end with the vast outpouring of the Ventersdorp Group 
rift-basin volcanics at ~ 2.71 Ga (Brandl & de Wit, 1997; Coward et al., 1995).  
 
2.5. East Sahara or Nile Craton 
 
The poorly known East Sahara or Nile Craton stretches E-W from the Hoggar Massif 
(Algeria) to the Western Desert (Egypt). It is largely covered by younger rocks and 
reworked by Pan-African events. Rocks from the Uweinat Massif (Egypt) are as old as 
2.63 Ga, but the bulk of the pre-Pan-African Nd model ages reported for the craton are 
Proterozoic. Provenance ages and xenocryst ages from Egypt and Sudan indicate 
significant episodes of crustal growth during the Proterozoic at 2.5-2.4 Ga, 2.1-1.9 Ga, 
1.7-1.2 Ga and 1.0-0.8 Ga (Stern et al., 1994).  
 
2.6. Malagasy Shield 
 
The Malagasy Shield (Madagascar) is divided in two parts by the NW-SE trending 
Bongolava-Ranotsara shear zone with high-grade Pan-African gneiss affecting 
Mesoproterozoic and possibly Archean protoliths to the S. To the N of the shear zone, 
low- and medium-grade greenstone-gneiss terrains occur separated by metasedimentary 
rocks and granitoid.  
 
The greenstone belt stratigraphy has been divided into metasedimentary/paragneiss 
dominated (Androyen, Graphite Systems), and greenstone dominated (Vohibory 
System) sequences. A migmatite tonalite gneiss in the sequence is dated at 3.19 Ga, 
whilst 2.52-2.49 Ga, granitic orthogneiss intruded the greenstone (Tucker et al., 1997). 
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