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Summary  
 
A salient aspect of the tropics is the prevalence of deep convection. It spans much of the 
depth of the troposphere, due to the positive buoyancy of cloudy updrafts warmed by 
latent heating from condensation. Cells of deep convection transfer heat, moisture and 
momentum to upper levels. They are crucial for the large-scale atmospheric circulation. 
Most precipitation from tropical systems is from deep convection. The most vigorous 
deep convection is lit up by lightning, especially over land.  
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Deep convection, certain sources of aerosol and of greenhouse gases, certain aspects of 
climate feedbacks, and some mesoscale cloud systems (e.g. hurricanes) are more 
common in the tropics than elsewhere. The tropics have a unique role in atmospheric 
radiative transfers, with their excess energy from radiation driving large-scale flows. 
However, the nature of many of the small-scale processes in the area of physical 
meteorology differs little qualitatively between the tropics and extra-tropics, although 
their frequency of occurrence may be different. For example, aerosols activate by the 
same set of mechanisms in the tropics as elsewhere.  
 
In the rest of this chapter, aspects of the science of aerosols, clouds and radiation are 
outlined, with a mention of any phenomena particularly common or different in the 
tropics. Some highlights from the latest research in the broad field are mentioned.  
 
1. Introduction 
 
The tropics are where the majority of the solar energy entering the earth's system is 
absorbed by the surface. Latent heat release is the primary energy source of synoptic-
scale tropical disturbances, due to the weakness of the Coriolis force and to the 
associated horizontal homogeneity of temperature fields there. Much of this latent heat 
release occurs in systems of deep convection. Convective cells are convective-scale 
circulations (< 20 km) embedded in large-scale circulations. There is a two-way 
interaction between the deep convection and the large-scale circulations. In fact, much 
of the ascent of large-scale circulations occurs inside the updrafts of deep convective 
clouds in the tropics. So, the tropical clouds must be represented in models of numerical 
weather prediction for adequate forecasts to be made in the tropics.  
 
Yet large-scale or global models have inaccuracies in predicting tropical precipitation, 
the El Nino Southern Oscillation and the Madden-Julian Oscillation (MJO).  Such 
biases may be attributed mostly to the treatment of small-scale processes, such as 
tropical convective clouds. In such models, small-scale processes can only  be 
represented approximately in terms of their interaction with the large-scale flow (e.g. by 
latent heat release in clouds). This linkage is  not completely understood. For instance, 
an open question is how cloud cover and properties respond to climate change, altering 
the reflection of sunlight to space and modifying the surface warming. Clouds are 
inherently difficult to model, especially the convective ones.  
 
In the tropics, convective clouds are common and can be very deep. They are a response 
of the troposphere to intense heating and moistening, preferentially at lower levels, by 
the warm surface. They are often electrified, especially over land, as convective ascent 
can be very rapid. Their microphysics is coupled to their dynamics, partly though latent 
heat release and via the ascent-dependent supersaturation, which governs processes of 
nucleation and diffusional growth. Microphysics consists of a web of interactions 
between different types of ice and liquid (e.g. cloud-droplets, pristine crystals, 
aggregates or “snowflakes”, graupel, raindrops, hail).  
 
In nature, aerosols, clouds, turbulence and radiation are tightly coupled. Cloud-related 
processes occur on widely varying spatial scales and are inter-dependent. Droplet 
activation by aerosols occurs on the submicron-scale; prolonged condensation leading to 
rain formation occurs on the kilometer-scale; mesoscale cloud systems that alter the 
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atmosphere's radiation budget occur on the scale of many 10s or 100s of kilometers. 
Clouds may be viewed as large sets of aerosol particles made visible by their mass 
activation in saturated conditions, and so cloud properties tend to be related to 
environmental aerosol loadings. This multi-scale nature and inter-relatedness of diverse 
physical processes is one reason why clouds are so difficult to treat in large-scale 
forecasting models. 
 
Models simulate the large-scale flow by predicting momentum, heat and moisture at 
discrete points on a 3D grid throughout the atmosphere. The problem is how to forecast 
meso- or synoptic-scale tropical disturbances adequately, if small-scale processes are 
crucial, as noted above, and if they exist on scales too small (e.g. < 10 km, down to less 
than 1 micron) to resolve on such a grid. The modern strategy for development of 
climate models is to understand small-scale processes first with separate “process-level” 
models and then to create simplified or statistical representations of these processes (e.g. 
“parameterizations”) for the large-scale or global models.  
 
This focus on small-scale processes illuminates the interactions between components of 
climate, which were previously studied in isolation. Aerosol science and cloud physics 
were once studied as if they were almost disparate disciplines. For instance, the 
composition of natural ice nuclei in the atmosphere used to be a mystery, as only their 
final, combined  effects on ice concentration  could be measured. But now, with better 
observational instruments, it is appreciated that ice nuclei (IN) are particular species of 
insoluble aerosols in certain size ranges, so the linkage between ice-clouds and aerosols 
is being seen moreclearly. Similarly, in-cloud turbulence and cloud microphysics are 
now seen as inextricable. It is now appreciated that the time for rain to form in warm 
clouds is shortened by in-cloud turbulence.  
 
Fields such as cloud physics, turbulence, radiation, aerosol science and now even 
electrification are starting to merge, as the understanding of their inter-dependence in 
nature grows. Improved parameterizations of small-scale processes are emerging, for 
example with new schemes for cloud microphysics. With this trend and with higher 
resolution afforded by faster computers, the quality of forecasts of tropical severe 
weather, which has major socio-economic and humanitarian impacts, will likely 
improve in future.  
 
2. Clouds and Aerosols in the Tropics 
 
Clouds are central to physical meteorology. They consist of many cloud-particles so 
small (< 0.1 mm) that they fall very slowly (see Figure 1) and are effectively suspended 
in the air. Yet cloud-particles are large enough to be visible and store much mass of 
condensate. Their mass is derived from diffusion of vapor onto cloud-particles. The 
growth of cloud-particles (< 0.1 mm) to become precipitation-sized (> 0.1 mm) is 
required if a cloud is produce any precipitation that falls to the surface.   Clouds 
determine the distribution of precipitation, which consists of particles large enough (e.g. 
> 0.1 mm) to fall to the surface without totally evaporating away, and govern the 
radiative fluxes that drive the climate system.  
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Figure 1.  Relative sizes, and fall-speeds of CCN aerosols, cloud-droplets and raindrops 
(reproduced from McDonald (1958); see Rogers and Yau (1991, Figure 6.1 therein)).  

Note that the fallspeed of a drop increases monotonically with its size. 
 
Warm clouds are produced by condensation, which can only occur at vapor pressures 
near or above water saturation. Atmospheric air 'parcels' have a variety of possible 
routes for attaining saturation. However, a common route involves the chilling of air by 
expansion during ascent to levels of lower ambient pressure, until it becomes saturated. 
Precipitation production requires prolonged chilling and condensation after saturation 
has been reached, which only sustained ascent usually provides. Consequently, 
characteristics of clouds, such as their extent, precipitation production and lifetime, are 
all closely related to the nature of the ascent.  
 
Such ascent is produced by dynamical instabilities in the atmosphere. In the tropics, 
buoyancy forces cause these instabilities, because the Coriolis force is very weak. If 
warm moist air is located beneath relatively cold air, such that the atmosphere is 
unstable, then buoyant convection acts to stabilize the atmosphere by vertically re-
distributing heat and moisture. Warmer (less dense) and colder (more dense) air is 
transferred to upper and lower levels respectively, while latent heat is released by 
condensation of the moisture. A convective cloud is generated. Conditional instability is 
an example of this type of instability. 
 
There are many different types of clouds. The characteristics of clouds are defined by 
environmental conditions, such as temperature, instability and shear. Clouds may be 
grouped into three broad types: convective (or ‘cumulus’ or ‘cumuliform’), stratiform 
and cirriform. Convective clouds are vertically developed with a depth comparable to 
their width and are driven by buoyancy forces due to an unstable environment (warm 
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moist air below cold dry air). The deepest type of convective cloud is cumulonimbus, 
which is so deep that its outflow near cloud-top forms a trail of cirriform cloud 
consisting of ice, the outflow being called an anvil. Stratiform clouds occur in buoyantly 
stable environments, often where there is large-scale ascent (e.g. near fronts), and are 
much wider than they are deep. They resemble a grey cloud-layer, taking up the entire 
sky. Nimbostratus is the deepest type of stratiform cloud, producing significant 
precipitation. Stratocumulus cloud is common in the boundary layer (e.g. in sub-tropical 
subsidence regions over the oceans) and consists of shallow convection that detrains 
condensate, creating a stratus layer and being a hybrid of two of the above types. Often 
such shallow convection is organized in cells that have cloud-free regions (e.g. pockets 
of open cells), and more marked drizzling. Cirriform clouds (e.g. cirrus) are similarly 
wide except that they occur at temperatures colder than about -30 oC, and usually 
consist only of ice. For each of these three types, there are shallow and deep clouds, 
with the latter producing substantial precipitation.  
 
Most types of cloud occur from time to time at most latitudes. Nevertheless, in the 
tropics, the high degree of instability causes deep convective clouds to be relatively 
common. Cumulonimbus clouds can span almost the depth of the troposphere, which is 
deeper at lower latitudes. Deep convective clouds are glaciated at upper levels, if they 
extend well above the freezing level (about 5 km altitude in the tropics). In the sub-
tropical regions of large-scale subsidence, low cloud confined in the marine boundary 
layer covers a large area. It often consists of shallow convection and layer-cloud (e.g. 
stratocumulus).  
 
Liquid water has a meta-stable state at temperatures between 0 and almost −40 oC. 
Droplets may remain supercooled while in this state. At temperatures colder than about 
−40 oC, all supercooled cloud-droplets must freeze spontaneously. This is called 
homogeneous freezing. Clouds at levels colder than about -40 oC consist only of ice. 
This is why cirrus from the anvils of cumulonimbus clouds has a fibrous appearance and 
usually consists only of ice. Anvils consist of the outflow of ice from the updraft of the 
cumulonimbus, and this anvil outflow forms cirriform cloud. 
 
Aerosols are particles of solid and liquid material suspended in the air of the 
atmosphere. Aerosols are always sufficiently abundant to allow clouds to form, acting 
as sites for condensation or vapor deposition. Vertical motions and large-scale supply of 
heat and moisture determine whether there is saturation for clouds to form. However, 
the aerosol content of the local environment can influence rain production, glaciation 
and other properties of a cloud. In nature, there is a myriad of physical mechanisms for 
conversion of aerosols to cloud-particles (`heterogeneous nucleation' of cloud-droplets 
or crystals). Soluble aerosol material (`cloud condensation nuclei' or CCN) can activate 
to become cloud droplets. Droplets and crystals making up clouds are usually referred to 
as hydrometeors (> about 1 micron), rather than as aerosols. At levels in the mixed 
phase region (0 to almost −40 ◦C), the nucleation of ice in supercooled water (or in a 
supersaturated environment) is promoted by the presence of foreign surfaces. This is 
called heterogeneous ice nucleation and is caused by IN, which are insoluble aerosols > 
0.1 mm that nucleate crystals at high enough supercooling and humidity.  
 
In a sense, the distinction often made between aerosols and cloud-particles is quite 
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artificial. Aerosols become cloud-particles, by growing to be visible, the process of 
activation. Cloud-particles (except for secondary crystals) may be viewed as a subset of 
the extended population of activated and un-activated “aerosols”. Cloud properties, such 
as albedo, rain production and even phase, emerge from the microphysical interactions 
between diverse hydrometeors and vapor, and are defined by aerosol-sensitive numbers, 
sizes and phase of cloud-particles. Cloud properties are influenced by the chemistry and 
loadings of environmental aerosols. That is the motivation for considering aerosols and 
clouds together in the same section here.  
 
2.1. Aerosols and their Sources 
 
Aerosols containing hygroscopic and water-soluble material can serve as centers for 
condensation, and are called condensation nuclei (CN). Almost all aerosols are CN. 
They are essential for formation of clouds, because without them surface tension effects 
would tend to prevent the survival of embryonic droplets of pure water formed by 
chance collisions (homogeneously). In the absence of aerosols, droplets would form 
only when the relative humidity is several hundred percent, which is never seen in the 
atmosphere. 
 
As soon as a CN aerosol is generated in the sub-saturated environment, some water 
condenses onto it, dissolving its material. Consequently, throughout the atmosphere, CN 
are present as submicron- or micron-sized solution droplets. They have a wide range of 
sizes between about 10−3 and 10 microns and each size of CN in a given chemical 
species has a unique critical supersaturation at which it can form a droplet. The larger 
the CN, the lower its critical supersaturation. For all CN in a typical air sample to be 
transformed into droplets, an extremely high supersaturation would be needed because 
most CN are very small (e.g. 10s of nanometers or less). For supersaturations seen in 
real clouds, the small fraction of the CN that activate as droplets are called cloud 
condensation nuclei (CCN).  
 
A subset of the aerosol population contains water-insoluble material and can act as 
centers for ice formation. Such aerosols are called IN. Dust/metallic, black carbon, and 
insoluble organic aerosols are the key groups of IN. Usually, IN particles are coated 
with soluble material, so IN tend to be a subset of CCN. 
 
About 75% of the total mass of aerosol material is directly from primary sources at the 
Earth’s surface. In the tropics, forest fires are important sources, especially during the 
biomass-burning season, as are industrial sources. Deserts in the sub-tropics are a source 
of much dust. Recent research has shown that the precise sources of dust are extremely 
localized. The other 25% of total aerosol mass is from secondary sources involving 
chemical conversions from the gaseous phase (SO2, N2O, NH3 ...). 
 
The smallest aerosol (< 0.2 microns) can originate from combustion processes, such as 
forest fires, volcanoes and human activities. But also, natural conversion of trace gases 
in the atmosphere can create them. Such conversions may be enhanced by high relative 
humidity, liquid water and sunlight. Evaporation of cloud-droplets can leave behind 
sulfate particles, boosted with sulfate material from the reaction of SO2 and ammonia in 
droplets. 
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Large and giant aerosols > 0.2 microns are caused by: 
 
• erosion of the land surface in arid regions, generating dust; 
• pollen, pollen fragments, spores from plants, bacteria, leaf litter; 
• the bursting of air bubbles from wave-breaking over the oceans, emitting salt 

particles. 
 
In most of the tropics, surface winds are usually weak, so sea-salt aerosols are scarce. 
However, tropical cloud systems, such as hurricanes, can generate them, influencing 
cloud properties. 
 
The aerosols generally contributing most to the reflection of sunlight are sulfate 
aerosols. The main source of sulfate aerosols is the gas, SO2, emitted by fossil fuel use 
(about 70%) and dimethyl sulfide (about 20%) emissions from plankton. This occurs by 
reactions within cloud-droplets that then evaporate, condensation of SO2 onto pre-
existing aerosols, and reaction of SO2 with OH in the air. Much sulfate material exists 
as ammonium sulfate in the atmosphere. Organic aerosols consist of many different 
chemical compounds and are directly emitted into the troposphere (e.g. by combustion, 
biomass-burning, natural biogenic emissions) or are formed by condensation of gases. 
Chemical properties of organic aerosols change after emission, due to reactions with 
ozone, OH and the nitrate free radical (NO3). After sulfate, organic aerosols make the 
next largest contribution to aerosol optical depth in pollution plumes, as seen in a recent 
field experiment over the Indian Ocean in the tropics. 
 
Black carbon results from incomplete combustion and its emissions are mostly 
anthropogenic. It is emitted as complex chain structures that collapse and aggregate as 
the particles age. It acts as a site for condensation of sulfate from SO2 gas. It strongly 
absorbs solar radiation.  Most mineral dust is also absorbing of solar radiation and is 
naturally emitted from deserts. Dust has major anthropogenic sources. Finally, 
ammonium nitrate aerosol is formed from excess ammonia not neutralized by formation 
of sulfate.  
  
2.2. Aerosol Growth and Atmospheric Processing 
 
Large aerosols (> 0.2 and < 2 microns) are partly caused by coagulation of the smaller 
aerosols < 0.2 microns. The peak in the aerosol size distribution for such large aerosols 
is termed the accumulation mode. All aerosols are subject to a wide range of 
transformations: condensation, coagulation, scavenging, wash-out, sedimentation, 
dispersion, mixing. Some of these alter the aerosol size distribution. Particles formed by 
condensation are roughly spherical but other types of particles may be irregular, 
crystalline or fiber-shaped. The majority of aerosols are Aitken particles (e.g. at 
concentrations of about 105 cm−3 for polluted air). However, the critical supersaturation 
for Aitken particles is so high that very few are activated in the real atmosphere. Also, 
giant particles fall out rapidly from the troposphere, and so, their scarcity limits their 
importance. This leaves the large aerosols as the most important ones for natural cloud 
formation. The large particles are formed by the tendency of the numerous Aitken 
particles < 0.1 microns to collide, due to their Brownian motion, and to clump together. 
This coagulation causes a peak in the aerosol size distribution in the range of 0.2-2 
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microns. 
 
Recent aircraft observations in several field campaigns over the Pacific ocean, 
especially at low latitudes, have revealed that in the upper troposphere near outflow 
from deep convection there is nucleation from the gas phase (e.g. SO2 from the outflow) 
of extremely numerous (e.g. > 10,000 cm-3) and small (3-10 nm) soluble aerosols. They 
are typically sulfate particles in the Aitken size range. During transport and subsidence 
of the ambient air, these aerosols grow, with condensation of gases (e.g. SO2) and 
coagulation. This very fine mode of sulfate extends down to the boundary layer. Its 
average particle size increases with decreasing height throughout the free troposphere. 
Sampling of aerosol pollution from Asia that flows out across the Pacific has shown that 
it consists of much insoluble carbonaceous material internally mixed with soluble 
material (e.g. sulfate), partly deposited at its combustion-related source.  
 
Another secondary source of sulfate aerosol is from gases formed by reactions of 
dimethyl sulfide emitted by plankton in the ocean. This can happen when mixing (e.g. 
near the top of the boundary layer) boosts the supersaturation of sulfur-containing gas, 
for instance by reducing the surface area of existing aerosol onto which sulfate material 
condenses. In the boundary layer, cloud processing may cause the bimodal sulfate 
distribution typically seen there, with Aitken and large modes.  
 
Some aerosols are initiated naturally in the troposphere. Their life-cycle may take them 
through the boundary layer, with cycles of droplet activation and evaporation before 
being rained out. Cloud processing can generate bimodal aerosol size distributions and 
involves:- (1) aqueous-phase reactions in cloud-droplets converting gases in the ambient 
air (e.g. SO2) into extra solute; and (2) evaporation of cloud-droplets re-generating the 
aerosols at a larger size. Another new view is that chemical processing of aerosols, 
involving condensation of soluble chemical species from the gas phase, occurs during 
long-range transport in the environment. Such soluble coatings have been recently 
found to alter the aerosols ability to nucleate ice and activate droplets in many ways. For 
instance, organic coatings can reduce soluble particles’ hygroscopicity and surface 
tension, and may slow down their condensational growth to an equilibrium size. This 
alters the critical supersaturation at which they become cloud-droplets, affecting how 
many aerosols activate at cloud-base.  
 
- 
- 
- 
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