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Summary 
 
The ocean and atmosphere are in constant exchange of heat, water, and momentum. The 
interaction of the ocean and atmosphere adds shades and rhythms in the structure of 
tropical climate. Ocean-atmosphere interaction research has experienced rapid growth in 
studying El Nino/Southern Oscillation (ENSO), and yielded tremendous societal 
benefits by enabling and improving the prediction of ENSO and important modes of 
climate variability. This chapter reviews major ocean-atmospheric feedbacks that give 
rise to ENSO and other variations in tropical climate.  
 
1. Introduction  
 
Solar radiation is the ultimate source of energy for motions in the atmosphere and 
ocean. Most absorption of solar radiation takes place on the Earth surface, the majority 
of which is occupied by oceans. Thus oceanic conditions, sea surface temperature (SST) 
in particular, are important for atmospheric temperature conditions and circulation. 
Fueled by water vapor evaporated from the surface, deep convection in cumulonimbus 
clouds and resultant condensation and freezing are the dominant mechanism for heating 
the atmosphere. Atmospheric convection is strongly regulated by SST on the one hand 
and affects the ocean on the other by modulating surface momentum and heat fluxes. 
Latent heating in atmospheric convection drives surface winds and modulates cloud 
cover. Surface winds drive ocean circulation and affect ocean surface heat flux while 
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clouds modulate surface radiative flux.   
 
Thus, the ocean and atmosphere are a coupled system and their interaction helps shape 
tropical climate and its variability. Examples are abundant. Figure 1a shows the 
climatology of precipitation and SST. While the annual-mean solar radiation at the top 
of the atmosphere (TOA) is zonally uniform and symmetric about the equator, rainfall 
and SST are highly asymmetric both in the east-west and north-south directions. On the 
equator, SST in the eastern Pacific (say, near the Galapagos Islands, 90

o
W, equator) 

features a pronounced annual cycle with the maximum in March (Figure. 2) despite a 
TOA solar radiation dominated by a semi-annual cycle. Such departures in space and 
time from the solar radiation distribution are the result of ocean-atmosphere interaction.   
 

 
Figure 1. Annual-mean climatology: (a) SST (black contours at 1°C intervals; contours 

of SST greater than 27°C thickened) and precipitation (white contours at 2 mm/day; 
shade > 4 mm/day); (b) surface wind stress vectors (Nm-2) and the 20°C isotherm depth 

(contours at 20 m intervals; shade < 100 m). 
 
This Topic concerns major ocean-atmospheric feedbacks important for spatial and 
temporal variations of tropical climate. They involve changes in cloud cover, surface 
evaporation, and ocean dynamical adjustments. The scope of this review is limited to 
ocean-atmosphere interaction operating on large (>100 km) spatial and long (> 1 week) 
temporal scales. While variability on weather and shorter timescales and beyond the 
instrumental record is not covered, the feedback mechanisms discussed here are 
expected to operate for paleoclimate variability (Chiang et al. 2003; Timmermann et al. 
2007) and future climate change (Vecchi and Soden 2007). For a more comprehensive 
discussion of ocean-atmosphere interaction and its applications, readers are referred to a 
recent monograph on this topic (Wang et al. 2004).   
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Figure 2. Seasonal cycle in the equatorial Pacific: SST (contours in °C) and surface 

wind velocity (vectors in m/s). 
 
2. Bjerknes Feedback  
 
Strong east-west asymmetry is found over the equatorial Pacific, characterized by the 
Walker circulation (with the easterly winds at the surface) in the atmosphere and the 
cold tongue in SST (Figure. 1a). To a lesser extent, similar asymmetry is observed over 
the equatorial Atlantic.   
 
Under easterly winds, surface ocean currents flow poleward a few degrees away from 
the equator following the Ekman dynamics. The divergence of these poleward Ekman 
flows requires water to upwell into the surface layer on the equator. If the thermocline is 
close to the surface, this equatorial upwelling brings the cold thermocline water into the 
mixed layer, causing an SST cooling. On the equator where the Coriolis force vanishes, 
surface ocean currents flow in the wind direction, resulting in the westward South 
Equatorial Current (SEC) in the Pacific and Atlantic. The equatorial upwelling and the 
westward (SEC) shoals the thermocline in the east and deepens it in the west (Figure. 
1b). In steady state on the equator, the easterly wind stress is nearly balanced by the 
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pressure gradient force associated with the eastward shoaling of the thermocline.   
 
From an oceanographic point of the view, the easterly winds shoal the thermocline 
eastward and induce the equatorial upwelling, keeping the eastern basin cool. From a 
meteorological point of the view, on the other hand, the eastward SST cooling limits 
deep convection to the west and maintains a sea pressure gradient that drives the 
easterly winds along the equator. This circular argument indicates that ocean-
atmosphere interaction is at the heart of the cold tongue formation.   
 
The feedback may be described as follows (Figure. 3). Let us begin with modest 
easterly winds over the equatorial Pacific, which induce upwelling and tilt the 
thermocline, both acting to cool the eastern ocean and suppressing atmospheric 
convection there. This reduction in deep convection in the east raises sea level pressure, 
intensifying the initial easterly winds at the surface. The amplification of the initial 
perturbation indicates a positive feedback resulting from ocean-atmosphere interaction.  

 
Figure 3. Schematic for Bjerknes feedback. 

 
Bjerknes (1969) first proposed this feedback hypothesis for El Nino/the Southern 
Oscillation (ENSO), to which Wyrtki (1975) added the thermocline adjustment. 
Therefore it is also called the Bjerknes-Wyrtki feedback. The thermocline depth in the 
eastern Pacific controls how much equatorial upwelling cools SST, and is determined 
by the transport of warm upper-ocean water above the thermocline between the east and 
west, and in and out of the equatorial belt. Such warm water transport, governed by 
large-scale ocean wave dynamics, is essential for ENSO (see Topic xx in this Theme). 
In coupled ocean-atmosphere models, the most unstable or least damped mode often 
displays an interannual cycle of SST warming and cooling in the eastern basin, with the 
deepening and shoaling of the thermocline, respectively. Besides ENSO, such a 
Bjerknes mode of coupled ocean-atmospheric variability is observed in the equatorial 
Atlantic and Indian Oceans on interannual timescales (Chang et al. 2006).  
 
The equatorial cold tongue displays annual expansion and retreat in July-September and 
February-April (Figure. 2), respectively, over the Pacific and Atlantic. This annual cycle 
in SST is forced by that in meridional wind superimposed on the annual-mean southerly 
cross-equatorial winds, the latter being part of meridional climatic asymmetry. During 
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July-September, the southerlies intensify in response to the seasonal warming (cooling) 
in the Northern (Southern) Hemisphere, enhancing the upwelling cooling in the 
equatorial belt (Mitchell and Wallace 1992). Conversely, the relaxed southerlies cause 
equatorial SST to warm up during February-April. Unlike ENSO, thermocline 
adjustments are of a secondary importance for the annual cycle but the interaction of 
SST and surface winds causes a westward phase propagation of the annual cycle.   
 
- 
- 
- 
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