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Summary 

 

A volcano can be considered as a dynamical system, and each time series recorded at a 

volcano can be interpreted as one of its observables. It is therefore theoretically possible 

to extract, from a single time series, information about the underlying governing system. 

This is done through a procedure called "embedding" that is based on the intuitive 

statement that the only time series available carries with it information also about the 

time evolution of other parameters that we are not able to sample or observe. Carrying 

out this embedding procedure requires estimates of key parameters such as the optimal 

delay time and a proper embedding dimension. 

 

 Another independent, but conceptually similar procedure makes use of the Singular 

Spectral Analysis or Singular Value Decomposition. These and other related approaches 

can be used to conduct a data reduction phase, which condenses the amount of data to 

be analyzed and processed, while retaining the most of the information content. The 

resulting reduced data stream can be used for a number of purposes, such as 

characterizing different volcanic regimes, examining their relationship with external or 

internal events such as tectonic or volcano-tectonic seismic events, looking for 

precursors of paroxysmal eruptive phases etc. In this chapter the existing literature on 

this subject will be reviewed, and the prospects of future research will be discussed.  
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1. Introduction   
 

Forecasting is a key issue in volcanology, both from the pure research point of view 

(e.g. for the validation of a model of a given phenomenon) and from the more practical 

point of view of civil defense (e.g. to reduce the potential impact of an eruption on 

society). Volcanic risk can, as any other (natural) risk (UNDRO, 1979), be separated 

into three factors, i.e. hazard, vulnerability and exposure. Hazard can be defined as the 

probability of occurrence of a potentially damaging event in a given temporal and 

spatial window. The vulnerability is then the extent to which a given object can suffer 

damage from this event. Finally, our estimate of the value of such element at risk leads 

us to the concept of exposure. The combination of these three factors is the risk, which 

measures the expected number of lives lost, persons injured, damage to property or 

disruption of economic activity due to a given (volcanic) event. While vulnerability to 

volcanic events can be hopefully reduced, volcanic hazard cannot in general be 

mitigated, and forecasts of volcanic hazards are, therefore, an essential input for risk 

assessment. 

  

Very different time scales can be taken into account while evaluating volcanic hazard, 

spanning from minutes to thousands of years. We can assess volcanic hazards at short 

term (minutes to weeks), e.g. to study the evolution of an ongoing eruption or to plan 

safe touristic visits to a crater, at mid term (months to years), e.g. to monitor a volcano 

in order to detect the first signs of an upcoming eruption, or at long term (few years to 

hundreds of thousands of years), e.g. to choose a site suitable for a nuclear waste 

repository (Carniel et al., 2008b). 

 

Although in principle any (geophysical) time series recorded on a volcano - e.g. 

geomagnetic and electromagnetic (Currenti et al., 2005; Hayakawa et al., 2009) or 

thermal (Harris et al., 2005; Marchese et al., 2006; Lovallo et al., 2007) - can be used 

with the methods described here, the continuous seismic noise, together with classical 

“discrete” seismicity, is recognized as the one with the widest application and one of the 

most informative (Carniel et al., 2008a). This “seismic noise”, while approaching an 

eruptive phase, usually shows a growing self-organization as it transforms into what is 

more properly called “volcanic tremor”, that has been recognized as extremely 

information-rich already about 40 years ago (Schick and Riuscetti, 1973). 

 

Hints on which time series to choose for each time scale can also come from their 

persistence, which can be estimated with geostatistical tools (Jaquet and Carniel, 2001) 

also in a multivariate sense (Jaquet and Carniel, 2003). The variogram (Jaquet and 

Carniel, 2001) is in fact aimed at recognizing the “memory” of the system generating a 

given experimental time series and/or its variations with time. A time series that does 

not keep memory of its past cannot, in fact, provide information about the future of the 

evolving volcanic process, i.e. it cannot help to forecast an eruption. The geostatistical 

approach aims to identify this memory, if it exists, quantify its duration and exploit its 

potential in forecasting; this approach can be applied not only in the time but also in the 

space domain, in which these techniques were originally developed (Matheron, 1962). 

Such tools constitute therefore a powerful approach to the forecasting of volcanic 

eruptions, especially at medium–long term, based on a probabilistic formalism (Sparks, 

2003). A statistical analysis of e.g. seismic activity, if combined with suitable modeling, 
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can provide also interesting insights into the details of physical processes within the 

magma column (Bottiglieri et al., 2005; De Martino et al., 2011; Jaquet et al., 2006). 

The perspectives offered by the application of (geo)statistical models to volcanology 

were recently reviewed by Carniel et al., 2008b. In this review chapter we will therefore 

focus more on the deterministic approach. It is worthwhile to underline that the two 

approaches are not mutually exclusive and can on the contrary profit from a mutual 

integration. 

 

2. Data Reduction 

 

For each time scale, several independent approaches can be followed while analyzing 

even the very same raw geophysical data, as different parameters can show 

complementary information (Carniel and Tarraga, 2006). The single methodologies 

constitute therefore a first “data reduction” stage aimed at generating the inputs for a 

final evaluation stage. The basic idea is that we want to extract, from one or more 

experimental time series, the most significant information while maintaining a very 

limited set of parameters. These can be then computed in separate time windows and 

their time evolution investigated individually to identify the existence of specific 

regimes, precursors, etc. These data reduction methodologies can include classical (but 

still powerful!) evaluations of intensity and energy that can be then used for forecasts 

based e.g. on the Failure Forecast Method (FFM) concept (Voight, 1988). The idea is 

simply to integrate some positive quantity of the time series along each time window. 

This quantity can be for instance the absolute value of the amplitude of the signal; this 

choice produces a (seismic) intensity, which is known also as RSAM – Realtime 

Seismic Amplitude Measurement (Endo and Murray, 1991). On the other side, the 

squared value of the amplitude can be taken, producing the so called RSEM – Realtime 

Seismic Energy Measurement. Alternatively, some spectral-filtered versions of these 

quantities can be computed, defining what is called SSAM - Spectral Seismic 

Amplitude Measurement (Rogers and Stephens, 1995) or SSEM - Spectral Seismic 

Energy Measurement respectively. 

 

Power law accelerations in the mean rate of strain, earthquakes, tremor and other 

precursors have been widely reported prior to volcanic eruptions as predicted by several 

theoretical models. The FFM linearizes this power law trend and has been used in both 

hindcasts and forecasts (Tarraga et al., 2006; Tarraga et al., 2008a). More recently, Bell 

et al. (2011) have suggested that a Generalized Linear Model (GLM) method - a 

generalization of least squares linear regression which can account for a non-Gaussian 

distribution of errors from the mean (e.g. Poisson) and for a functional relation (e.g. 

power law) between the mean of the distribution and a basic linear model - could 

provide higher quality forecasts that converge more accurately to the eventual failure 

time.  

 

Hammer and Ohrnberger (2012) also claim to find better predictions of volcanic activity 

with respect to FFM by following a different approach, namely modeling the earthquake 

rate as a random walk process embedded in a potential function linked to the moving 

average of the random walk's trace. Other methods are based on classification heuristics 

such as the ones derived from the artificial neural networks (Lippmann, 1987) domain 

(e.g. Falsaperla et al., 1996; Carniel, 2005; Langer et al. 2006).  
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Finally, the combination of the results provided by these different approaches, which 

can be carried out with a Bayesian approach (Aspinall et al., 2003), with Markov 

models (Aspinall et al., 2006; Beyreuther et al., 2008), event trees (Newhall and Hoblitt, 

2002; Marzocchi et al., 2006) or event bushes (Pshenichny et al., 2009), is a noteworthy 

problem on its own. Actually, the combination of the different, possibly even 

contradicting, results is as important as the methods used to generate them, but we will 

not investigate in detail this issue here. 

 

3. Spectral Parameters 
 

Spectral analysis remains at the core of any processing of a (set of) time series. Fast 

Fourier Transforms (FFT) and their variations (e.g. Welch, 1967; Elliot and Rao, 1982) 

provide methods to determine the importance of each single frequency or frequency 

band in the construction of a given signal. The FFT assumes a stationarity of the signal 

and provides therefore information that describes the time series in its entirety, 

eliminating any time evolution in its frequency content. This assumption is neither 

appropriate nor very useful, and the classical solution is to divide our signal into time 

windows of suitable duration, compute the spectrum for each, and examine how the 

frequency content changes with time, building what is known as a spectrogram. This 

presents a paradox, as we are computing spectra (assuming stationarity) and then 

studying their time evolution (negating the same stationarity assumed before), a paradox 

however that nobody would abandon because it is a simple and powerful tool, although 

a theoretically questionable one. The way of presenting the resulting information is not 

unique, and has also evolved with the years exploiting newly available graphical 

visualization possibilities. We can stack each spectrum to build a 3D-like figure (e.g. 

Carniel et al., 1996), present a 2D-like figure using contour lines (e.g. Carniel and 

Iacop, 1996) or a now more classical color spectrogram (e.g. Carniel et al., 2006a), 

which is basically a matrix where horizontal and vertical coordinates represent time and 

frequency respectively (although not necessarily in this order) and the amplitude of each 

element of the matrix is somehow color-coded using a given color map. Although the 

information presented is the same in all these cases, transitions between different 

regimes potentially at very different time scales (e.g. Ripepe et al., 2002; Harris et al., 

2005; Carniel et al., 2003) can be made more evident by choosing the right presentation. 

In this respect, the type of normalization used is of uttermost importance to determine if 

a change will be visible or not. Spectrograms can in fact be normalized using all the 

values in the matrix at once, clearly highlighting amplitude variations but often masking 

variations in low-amplitude time windows if one time windows has much greater 

amplitude than the others. An alternative is to normalize the spectrogram independently 

in each time window. This choice completely throws away any information about the 

amplitude time variations – which have therefore to be presented in another graph, e.g. 

using the already cited RSAM derived parameters – but often highlights much better the 

possible subtle time evolution of the relative importance of different frequency bands.  

 

Related to the spectral analysis, other techniques aim to characterize the system with a 

few but most significant spectral parameters. In other words, instead of (re)presenting 

the full spectrogram, one reduces each column to one or more scalar parameters. Time 

evolution of the frequency content can be then analyzed e.g. by computing only three 

scalar parameters (dominant frequency, average frequency and spectrum standard 
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deviation), derived from the normalized spectrogram over time windows of suitable 

duration, as proposed e.g. by Carniel and Di Cecca (1999). The normalization is carried 

out in order to look at the relative energy distribution within this frequency range and 

not at the absolute values. The dominant frequency is the central frequency of the 

spectrogram bin where the maximum is found in a given time window. The average 

frequency is computed by weighting the central frequency of each bin by its relative 

value, so that it represents the barycenter of the spectral distribution. Finally, the 

spectrum standard deviation measures how disperse the spectrum is in each time 

window. Moving averages of the resulting time evolution can also be carried out in 

order to smooth the graphs.  

 

Other spectral techniques aimed at highlighting the appearance of “unusual” frequencies 

are being included in routine seismic noise analyses of volcanic seismic signals 

(Arambula-Mendoza et al., 2011), such as the minimum spectrum, proposed by Vila et 

al. (2006). The Base Level Noise Seismic Spectrum (BLNSS), or simply minimum 

spectrum, was initially proposed to monitor the health of instrumentation and to observe 

correlation between seismic noise and seasonal conditions but was then retuned as a tool 

for the analysis of volcanic activity (Vila et al., 2006). The method consists in 

comparing the amplitude of all spectral components of a series of spectra obtained from 

contiguous segments of data. By selecting the minimum value for each frequency, a 

new spectrum is constructed in which transient signals are eliminated if the calculation 

is carried out long enough. This „minimum‟ spectrum represents the normal background 

seismicity spectrum acquired with a healthy instrument or network. Deviations from 

this minimum spectrum, with the appearance of higher weights at given frequencies, can 

indicate either a problem in the acquisition system or a change in the natural dynamical 

regime, e.g. a volcanic unrest. 

 

In the following sections, we will concentrate on the data reduction techniques based on 

the deterministic approach, the theory of non linear dynamical systems (e.g. Carniel and 

Di Cecca, 1999) and the embedding (Packard et al., 1980), and we will use in most of 

the cases the volcanic tremor to illustrate the application of the methodologies to a 

series of case studies taken from the recent literature. 

- 

- 

- 
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