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Summary 

The geographical and geodynamical importance of the ocean, in a global perspective of 
sustainable development, is emphasized. Historical, recent, and ongoing progress of 
ocean sciences are stressed and the essential processes which dominate the physics, 
chemistry, biology, and geology of the marine environment are briefly described, 
underlining the importance of interactions between these traditional disciplines and the 
need to take into account the multiplicity of timescales, length scales, and levels of 
hierarchical organization of the ocean system in all observational and modeling studies. 

1. Introduction 

Photographs of the Earth taken from space show a beautiful blue and white planet. The 
ocean gives the blue color and the clouds the white. The dominant color of the Earth is 
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blue because the ocean covers about 71 percent of the planet’s surface. With a mean 
depth of some 4 km, the ocean is a vast, fascinating reservoir of water, food, minerals, 
and energy. 

Ocean science is relatively young. In his caustic analysis of The Age of Physical 
Oceanography, Rui Xin Huang writes: 

Most branches of sciences go through a “life” cycle similar to the human life cycle, 
which includes the stages of infancy, childhood, adolescence, adult and old age, 
eventually, death. 
 
 High-energy physics (almost perished) was one of the hottest sciences in the twentieth 
century and thus it attracted many gifted scientists. If judged simply by the number of 
Nobel Prize winners, it was on the top of the science landscape. However, it is now, for 
the most part, history. The fast decline of high-energy physics is not due to the fact that 
it is no longer challenging, but rather it is too expensive and has very little direct impact 
on society. 
 
 Aerodynamics (old age) started around 1930 and reached its peak in the 1960s. Now 
computer simulations are as good as wind tunnel results. Although many unsolved 
problems remain, aerodynamics is no longer a young science. After the Apollo landing 
on the moon, aerodynamics reached maturity. Government funding declined quickly. As 
a result, many scientists left aerodynamics and entered other new research fronts, such 
as geoscience and life science. 
 
 Meteorology (adult) started around the beginning of this century. It developed very 
quickly due to the strong demand for weather forecasting and the collection of a large 
database. Now weather forecasting on the synoptic scale has become a routine 
engineering problem. There remain many questions related to smaller scales or very 
strong nonlinear processes associated with severe weather forecasting. The most 
challenging problems are associated with understanding and forecasting climate 
changes, which are intimately related to the dynamics of ocean circulation. 
 
 Physical oceanography (adolescent) was started a long time ago with tidal observations 
and theory, but is moving much more slowly than meteorology. We have just barely 
completed the first picture of the world ocean. Meteorology, which is generally 
considered our twin, has a much shorter history and within the past fifty years has 
developed much faster. There are two main factors that have contributed to the different 
fates for these two disciplines of science. First, there is strong demand for weather 
forecasting, which is the primary driving force for the atmospheric science. Second, 
data collection in meteorology is conducted more conveniently. Since there will be a 
stronger demand for climate forecasting and for an understanding of the global 
environment, physical oceanography will enjoy its golden period in the next ten or 
twenty years. Physical oceanography is still young, and there is a bright future in front 
of us. This is good news for all oceanographers. 
 
 Environmental science (child) is one of the youngest sciences. As the impact of human 
activity on nature becomes more noticeable, understanding these effects and preserving 
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our environment become more and more pressing issues. It is expected that 
environmental science will be one of the most important branches of science in the next 
century. 
The author is here mainly concerned with physical oceanography and its possible 
effects on climate. However, the ocean system is a whole, with physical, 
biogeochemical, ecological, and socio-economic processes interfering, competing, and 
comforting each other. Similarly, we should remember that ocean science grew out of 
the perpetual confrontation between marine physics, chemistry, and biology, generating 
inter-disciplinary overviews, novel equipment and techniques of observational surveys, 
and worldwide co-operation. 

In addition, human activities are fundamentally affecting marine ecosystems at the 
global scale via fisheries, aquaculture, introduction of non-native species, modification 
or destruction of critical habitats, and through the addition of nutrients and pollutants. 
The stress is particularly severe in coastal zones which occupy just 10 percent of the 
ocean surface, but on which 50 percent of the world’s population depend, extracting 
resources and disposing of waste. The ocean also plays an essential role in the 
regulation of major biogeochemical cycles and their climatic impacts, and is a reserve of 
essential living and non-living resources, the serious-minded exploitation of these 
resources is a cogent part of environmental management in a global perspective of 
sustainable development. Interdisciplinary ocean science, in this respect, belongs to the 
environmental sciences regarded by Huang as the youngest of all. 

The ocean as one of the media of sustainable development must be considered in its 
natural complexity, made of intricate interactions of processes belonging to different 
disciplines: physics, biogeochemistry, ecology, economics, and sociology that have 
different levels of hierarchical organization and different (time and length) scales. 

Perhaps the notion of timescale is the most common and easiest to grasp. Everyone 
knows the difference between a bus leaving every five minutes and a coach with one 
departure a day; children have learned that, on the beaches of the North Sea, they will 
not see any significant change in tidal levels in a few minutes. On the other hand, they 
will be completely misled by tidal mechanisms if they reappear to observe it, at random, 
after several days or weeks. They instinctively associate the tidal process with a 
timescale of a few hours. This gives them a sound feeling of how to intelligently sample 
variations in tidal elevations, and how to correlate them with a great variety of other 
processes from the uncovering of beaches and reefs to variations in coastal ecosystems 
and the distribution of debris along the shore. 

Looking further, it is not difficult to see that the geochemical and ecological processes 
have dominant timescales associated with global biogeochemical hierarchical 
organizations resulting from different rates of chemical reactions and physiological, 
behavioral, and ecological functions, confronted to the multi-scale physical environment 
which one instinctively perceives. Socio-economic anthropogenic interferences have 
also their own operating patterns and routines and, extrapolating to variations in space, 
one can easily have a vision of the natural inter-disciplinary complexity of the ocean. At 
the same time, one can easily imagine, with the same intuitive wisdom as the child 
observing the tidal excursions on the beach, that processes of similar time- and length-
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scale are likely to have a more “privileged,” efficient, direct (i.e. “resonant”) interaction 
than processes of very different scales. 

A picture thus emerges of a structuration of the ocean’s diversity, where 
multidisciplinary processes and interdisciplinary interactions can be ordered, sampled, 
analyzed, and modeled according to their typical scales of variations in time and space, 
allowing for a better understanding of all the physical, biological, socio-economic, and 
other interplaying mechanisms which may enforce or jeopardize sustainable 
development. 

The simplest way to understand the predominance of processes of well-identified (time 
and length) scales, within the expanse of the geophysical variability of the marine 
system, is to remember the motion of a spring. A spring has a natural frequency of 
oscillation (the so-called “eigenfrequency” which is a function of its mass and elasticity). 
The inverse of this frequency defines a timescale at which the spring can most 
effectively convert energy (from potential to kinetic form, for instance) and generate 
large amplitude motions from external solicitations, however small. In addition, the 
application of an external force can produce forced oscillations of the spring at the 
frequency of the forcing. 

Marine geophysical processes of different timescales can be, similarly, associated with 
specific external forcing mechanisms or internal eigenmodes of behavior of the system. 

For instance, solar radiation is an essential source of energy. Light from the sun is 
indispensable for photosynthesis and primary production, a constitutive element of the 
marine food chain. It is thus not surprising to find strong diurnal and seasonal signals in 
the ecohydrodynamics of the upper layer of the sea. Similarly, lunar and solar tidal 
forcings have well-defined frequencies and generate wave motions in a band of 
timescales corresponding to their frequencies and those of their principal harmonics. 
The wind acting on the sea surface and, in general, all air-sea interactions, affect the 
marine system in well-defined ranges of timescales related to the typical times of 
change of the weather patterns. 

On the other hand, seawater is naturally stratified because water density is affected by 
temperature (solar heat coming from above, for instance) and salinity (the 
concentrations of dissolved substances). The stratification in the sea is, in most cases, 
stable, i.e. heavy water lies underneath lighter water. This creates a restoring force: if 
one parcel of water is displaced up or down, it will experience a gravity force tending to 
return it to its equilibrium level. Possible overshooting will generate waves. These 
waves are called “internal waves” to stress the fact that they propagate in the stratified 
interior of the ocean and not in well-mixed boundary layers. Their frequency is the 
Brunt-Väisälä frequency, proportional to the square root of the vertical gradient of 
density. Typical values of the Brunt-Väisälä frequency in regions of significant internal 
wave propagation are in the range 10–4 to 10–2 s–1. One may thus associate with the 
vertical stable stratification an eigenmode of the marine system with timescales of the 
order of minutes to hours. 
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The geofluids are naturally studied in axes of reference fixed with the rotating Earth. In 
such a system of reference, the main correction for the motion of the reference frame is 
the existence of the “fictive” Coriolis force that tends to deflect any projectile or ocean 
current perpendicularly to its velocity. Students who have tried to throw a ball on a 
rotating table in the physics laboratory know very well that it does not travel in a 
straight line, but actually turns and comes back after describing a circular trajectory. 
This effect may be seen as the action of a restoring force and, in the ocean, it is indeed 
the source of so-called “inertial” oscillations and waves. The inertial eigenmode will 
have timescales, set by the vertical component of the Earth’s rotation vector, of the 
order of a few hours in mid-latitudes, comparable with the scales of the dominant tides 
and many wind-forcing events. There is also, in most cases, a significant overlap 
between the inertial and internal scale bands of the eigenmodes. 

In addition, the Earth is (very nearly) spherical. Although this may be difficult to 
visualize, the sphericity is responsible for some forms of restoring mechanisms 
(reminiscent of certain effects of bottom topography) that may give rise to the 
generation of waves and wave packets. The main parameter in determining the 
timescales associated with these so-called “Rossby” eigenmodes is the latitudinal 
gradient of the vertical component of the Earth’s rotation vector (β ∼ 10–11 m–1 s–1). 
Hence, for waves or wave packets affecting the whole water column, with a horizontal 
size of the order of a hundred kilometers (L ∼ 105 m), one finds timescales of the order 
of (Lβ)–1, i.e. a month or so. 

Internal waves, inertial oscillations, and Rossby waves, associated respectively with the 
stratification of the ocean waters, the Earth’s rotation, and the Earth’s curvature, may, as 
much as the familiar surface waves at the air–sea interface, give a vision of an ocean 
controlled by well-defined restoring forces acting as ordering agents of the ocean 
system. External forcings may seem to have similar functions, imposing the timescales 
of energy transfers from astronomical and atmospheric sources to the ocean (what better 
example of this hypothesis than the lunar tides?). However, one must remember that the 
ocean is a non-linear system and that processes excited by external forces, channeled or 
amplified by the activation of eigenmodes, interact between themselves and generate an 
ever-spreading manifold of phenomena of different (time and length) scales. The ocean, 
in this perspective, appears more or less as a battlefield: on the one hand, there are well-
organized forces (even if they are not devoid of some variability) which may come from 
astronomical and atmospheric forcings or be associated with eigenmodes of vibrations 
of a stratified rotating ocean on a spherical earth; on the other hand, omnipresent non-
linear interactions tend to spread the energy and the information over a wide range of 
scales and, one way or the other, drive the energy towards the smallest scales where it is 
ultimately dissipated into heat. It is therefore not difficult to visualize the energy 
spectrum of the ocean as a succession of peaks (where the energy is poured from 
outside or channeled by eigenmodes), separated by valleys alimented by energy 
transfers fostered by non-linear interactions. 

The study of ocean hydrodynamics cannot therefore be done without some form of 
(observational or theoretical) alternative focusing on one or the other main events. This 
requires a means of first, separating a targeted set of processes belonging to a well-
defined range of (time and length) scales, i.e. a “spectral window”; second, appraising 
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the long-term, long-range trend laid upon these processes by larger scale phenomena; 
and third, assessing the role of smaller scale fluctuations in smoothing out transitory and 
ephemeral variegations which can only blur the vision through the spectral window. 

Biogeochemical and ecological processes are also characterized by typical reaction rates, 
which may depend on various factors—concentrations, biomasses, light intensity, 
temperature, etc.—but can be easily quantified, and these in turn bring out specific 
ranges of timescales where, in terms of biogeochemical and ecological processes, 
“things are bound to happen.” Similarly, socio-economic anthropogenic interferences 
with the natural system, following the planning of management policies, can be 
associated with characteristic times of interventions. On the peaks and valleys postcard 
of physical processes, one must superimpose the same spectral distribution of 
biogeochemical, ecological, and socio-economic processes. 

The non-linear interactions that one has identified between physical processes happen, 
in exactly the same way, between physical processes and 
biogeochemical/ecological/socio-economic processes and between the latter. Any inert 
or living particle in the sea is transported by currents of all timescales and variability 
which may produce organized water mass transports or small-scale mixing which may, 
differently but equally efficiently, deeply affect biogeochemical and ecological systems 
from the displacement or diffusion of essential chemicals or contaminants, to 
physiological and behavioral performances of living species, population dynamics and 
marine productivity. Biogeochemistry, ecology, and socio-economic management of the 
marine system rely on the conveyor and assembly line of physical processes to execute 
optimally the functions of finding appropriate nutrients and energy, feeding and 
reproduction, escaping predators, locating prey or mates, securing habitats and 
population diversity, and harvesting at all levels of the food chain up to the final 
exploitation of the ocean’s (living and non-living) resources by man. 

It is easy to understand that, even more than for the study of physical processes, the 
study of the multidisciplinary ocean system will not be possible in a multidimensional 
space of non-linear interactions if one cannot frame a limited number of spectral 
windows (i.e. bands of length and timescales). Here, one can observe an overall 
resonance between energy and information being forced into the system and 
eigenmechanisms taking over (directly or through instabilities of primary spin-ups) to 
distribute these, as well as biogeochemical/ecological/socio-economic processes tuned 
to the same scales of global forcings. The identification of these Spectral Windows 
(note the use of capitals to emphasize that one is no longer simply probing the 
hydrodynamical variability but the whole interdisciplinary manifold of marine processes) 
is prerequisite to the understanding, ordering, and modeling of the marine system in an 
ultimate global perspective of sustainable development. 

 
 
- 
- 
- 
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