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Summary 
 
Life on Earth has experienced relentless climate changes over the past 3000 million 
years. For example, since the demise of the dinosaurs around 65 million years ago, the 
average surface temperatures have at times been up to 10°C warmer, or 5°C cooler, than 
at present. While many factors have contributed to climate trends and fluctuations, 
variability in the strength of the natural greenhouse effect seems to have been of 
particular importance. This means that the overall range of climate extremes has 
apparently been set by the upper and lower limits in the abundance of CO2 and other 
greenhouse gases. Furthermore, more short-term variations in atmospheric composition 
have at times provided positive feedback (accelerating changes) to temperature 
increases and decreases initially brought about by other factors. For instance, the trend 
towards rising temperatures in the past decade was interrupted after the 1991 Pinatubo 
volcano eruption in the Philippines because some 20 million tons of sulfur dioxide had 
been hurled into the stratosphere and circulated around the globe, cooling it for the 
following two years. 
 
The analysis of air bubbles trapped in polar ice has shown the extent and rate of 
atmospheric CO2 changes associated with geologically-recent climate oscillations in the 
Earth's Ice-Age cycle. Changes in atmospheric CO2 over the past 160 000 years are 
closely correlated with carbon isotope (C-13) indicators of plankton productivity. 
Anomalies in the planetary orbit, which affects the amount and distribution of energy 
received from the sun, set the tone for glacial-interglacial temperature changes but 
cannot account for their magnitude. During the cooling phase of the cycle, around 200 
billion (109) tonnes of carbon were removed from the atmosphere; a similar amount was 
returned during the more rapid warming periods, like the one which occurred most 
recently 10-15 thousand years ago. 
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Where did that CO2 come from and go to? The answer must lie in the ocean with its 
great supply of exchangeable carbon. Marine sediment cores indicate a stronger 
biological CO2 pump, but a weaker physical pump with reduced surface-to-deep ocean 
circulation, during the cold glacial periods. An increase in the availability of nutrients in 
the upper ocean is the most likely cause of enhanced marine productivity, caused either 
by changes in the pattern of ocean mixing, or by additional nutrient inputs from exposed 
continental shelves or from the atmosphere. Ice core data show that considerably more 
wind-blown dust from a drier, terrestrial environment reached polar regions during 
glacial periods. It is feasible that this dust served to fertilize the oceans: under present-
day conditions, the biological productivity of much of the Southern Ocean and parts of 
the Pacific may be limited by the aerial supply of essential minerals, such as iron. 
Nutrients in the Southern Ocean are at present not fully used by phytoplankton. Wind-
blown dust, however, may have promoted productivity during glacial periods. 
 
On a shorter time scale, several processes are known to play important roles in 
determining sea surface temperature distribution. Large-scale wind and current motions 
both play a significant role in governing the observed distribution of temperature. For 
instance, the evolution of El Niño is thought to be influenced principally by shifts in the 
circulation patterns of both the atmosphere and the oceans. 
 
1. Introduction 
 
Oceans play a major role in controlling climate. For instance, the oceans store energy 
when it is in abundant supply during the day, or summer, and releases it during the 
night, or winter. Further, evaporation provides a continuous air conditioning treatment 
of tropical sea surface temperatures. Such related air-sea interactions and ocean-
atmosphere transport processes, operating on a variety of time and space scales, 
maintain sea surface temperature. Salinity also plays a major role. It is now widely 
accepted that changes in surface salinity is the major driving force that can perturb the 
climate system. An example is the onset of the most recent cold phase, the 'Little Ice 
Age' from 1400 AD to 1850 AD that ended the 'Medieval Warm Period' which 
commenced about 900 AD. Viking settlements that flourished on Greenland in the 
Medieval Warm Period had to be abandoned during the early part of the Little Ice Age. 
This may have been caused by nothing more than changes in the enhanced freshwater 
supply of the Arctic Ocean, which subsequently upset the efficiency of the Nordic heat 
pump, hence the cooling. 
 
Normal patterns of temperature and circulation in the Pacific involve warm surface 
waters and a deep thermocline in the west, but cooler surface water, a shallow 
thermocline and upwelling in the east. Strong trade winds maintain higher sea levels in 
the west. Warmer air rises and forms precipitation in the west. But the reverse is true in 
the east where sea level is low and the air is dry. When this system is disrupted, 
anomalies in the response of the oceans by the winds may deepen the thermocline in the 
eastern Pacific, interrupting normal upwelling and producing anomalous warm sea 
surface temperatures characteristic of an El Niño, with implications for a temperate 
zone climate such as the one in California. The effects are most notable in precipitation, 
winds, river outflow, circulation and, indeed, almost every other climatic variable. 
Moreover, the effects are seen not only in South America but around the world. The 
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impact of El Niño on biological systems, particularly fisheries, has been the focus of 
many recent studies. Even marine iguanas, pelicans and other birds suffer when the 
upwelling of cold, nutrient-rich water ceases. 
 
As a historical irregularity, El Niño was originally described as a purely local biological 
anomaly. In the decades of the 60's and 70's, the fisheries saw a major collapse in 
anchovy catch and a shift from an anchovies-dominated system to a mixed system of 
sardines and other pelagic fishes in the North Pacific. El Niño has clear demonstrable 
effects on the fisheries, e.g., a 50 per cent decline in yield during moderate to strong 
events may have an impact of some $300 M US. 
 
Global warming, of course, affects the oceans as well. For instance, near the end of the 
last glacial age about 12 000 years ago, the Black Sea was a smaller, freshwater lake 
about 150 m lower than the Sea of Marmara off northeastern Mediterranean Sea. 
Warmer temperature of the Holocene melted glaciers and global sea levels rose 
markedly for several thousand years until a natural dam at today's Bosporus collapsed 
about 7500 years ago. This event sent 40 km3 (40 billion tons) of seawater, a day, 
roaring into the Black Sea. The inhabitants would have been forced to flee inland about 
50 km each month. Some still search for remnants of Noah's ark on the flanks of Mt. 
Ararat not far from the coast of the Black Sea. 
 
The current global warming, however, may have been caused by human activities such 
as burning of fossils and clearing of forests. There are six major greenhouse gases: 
Carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), perfluorcarbons (PFCs), 
hydrofluorcarbons (HFCs) and sulphur hexafluoride (SF6). The last three are artificial, 
and have gained importance in recent years. The US Environmental Protection 
Administration has estimated that global warming is most likely to raise the sea level 15 
cm by the year 2050 and 34 cm by the year 2100 and that there is a 1 per cent chance 
that global warming will go on to raise the sea level by 1 m in the next 100 years and 4 
m in the next 200 years. Widespread coastal flooding and erosion, and even the near 
disappearance of low lying islands such as the Maldives in the Indian Ocean world 
occur. 
 
2. Spatial Variations 
 
Predictions of large-scale events in the atmosphere and oceans are often based on 
phenomena which occur thousands of kilometers away. For example, the timing and 
strength of the monsoon in India depend at least partially on the behaviour of the Somali 
Current off Northeast Africa, and the El Niño off Peru is governed by perturbations of 
the trade winds and the Equatorial current system in the western Equatorial Pacific. 
Similarly, variations in the seasonal extension of the polar pack ice, determined by the 
winds, seem to have a major effect on the global heat budget over periods of months 
and even years. What is true is that quantitative predictions of climate in the atmosphere 
or the oceans require knowledge as to the distribution and movements of water masses 
and their interaction with the atmosphere around the world. 
 
Further, even phytoplankton affect the climate, not only because they affect the carbon 
cycle, but also because some produce dimethylsulfoniopropionate (DMSP), the 
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precursor of dimethylsulfide (DMS). DMSP is released from the algal cells into 
seawater where it breaks down to DMS which escapes to the atmosphere and forms a 
major source of cloud condensation nuclei (CCN) in remote marine regions. The 
amount of CCN influences the number and size of the droplets that make up a cloud, 
which in turn affects its radiative properties. The more numerous and whiter the clouds, 
the more sunlight they reflect back to space and the more potential they have to cool the 
planet. 
 
The movement of waters in the oceans with time has been depicted as the great 
'conveyor belt' (An updated illustration of this is shown in Figure 1 of Chapter Role of 
the Oceans in Global Cycles of Carbon and Nutrients). Although it is designed as a 
simple representation of ocean circulation, it is quite useful in showing the linkages of 
ocean circulation with the Earth's climate system. The belt is driven by an increase in 
the salinity of surface waters from tropical regions as they move to the North Atlantic 
and by the net transport of water from the Atlantic to the Pacific. The poleward 
transport of warm surface waters in the North Atlantic results in relatively warm winters 
in Europe. Through the ages-and perhaps right up into the future-this conveyor belt has 
been known to shut down. For example, there were cold conditions in the Younger 
Dryas event that occurred about 10 000 years ago when the Earth had started to warm 
up after the last Ice-Ages. Because temperature and salinity control the movement of the 
conveyer belt, it is sometimes called thermohaline circulation. 
 
At the same time the poleward flowing warm currents heat the high latitude regions, the 
water is cooled and sinks to form deep waters, which spread out to all major oceans and 
helps to make them homogenous. As a result, variations in the surface ocean water 
temperature anywhere are in a much smaller range (−2 to 30°C) than are the atmosphere 
or the land surface temperatures (~ −60 to 40°C). At any one locale, the variation is 
even smaller, less than 1°C between day and night, and around 10°C over the period of 
a year. At depths, the variations are still much smaller. The large amount of heat stored 
by the oceans and their slow response results in delays in the seasonal cycles compared 
with land. 
 
Even so, the ocean-climate system is constantly changing, and the El Niño event in the 
Pacific is perhaps best known. The extreme variability in tropical weather can be 
anticipated from the widely different terrain found between the Tropics of Capricorn 
and Cancer, i.e. between 23.5°S and 23.5°N. Despite such variability, however, there 
exist interconnections between different regions. For instance, the atmospheric 
circulation over India and Indonesia is closely related to barometric pressure changes 
over the southern Pacific Ocean. This phenomenon is called the southern oscillation 
(SO). The SO is, in turn, related to El Niño and the sea temperatures off the north-
western coast of South America. 
 
During normal years, the trade winds blow from east to west, pulling warm water 
behind. Cold, nutrient-rich seawater of the subsurface water near the Equator wells up 
from below along the Equator from the coast of South America to the International 
Dateline, nourishing phytoplankton in the euphotic layer and supporting the Pacific food 
chain. A pool of warm surface water sits off Indonesia, bringing rains to the region rich 
in rain forests. The jet streams deliver rain to southern Mexico and the Pacific 
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Northwest of America. 
 
On the other hand, during the El Niño years, which occur every three to seven years, the 
trade winds slacken, and stationary warm surface water east of the International 
Dateline prevents any upwelling of nutrient-rich deep water. As a result, productivity 
and fish stocks fall, and sea birds and turtles starve. The warm pool of surface water off 
Indonesia sloshes east, taking the storm clouds with it, thus reducing rain fall in 
southeast Asia. The jet streams shift north, and so do the rains. This event typically 
starts to develop in the summer and fall, reaching its maximum near Christmas and 
ending in the spring with the return of normal easterly trade winds and a resumption of 
Equatorial upwelling. The ocean-atmosphere system, however, often overshoots, and a 
cold La Niña develops. A particularly striking switch from El Niño to La Niña 
conditions occurred in May and June 1998, when trade winds abruptly returned to near 
normal strength in the eastern Pacific, and surface temperatures in the Equatorial cold 
tongue plummeted 8°C in only 30 days. 
 
Under normal conditions, some of the highest levels of surface-water pCO2 in the entire 
Pacific occur in the eastern Equatorial ocean (see Role of the Oceans in Global Cycles 
of Carbon and Nutrients). They are associated with the shoaling of the thermocline from 
west to east, which, along with nutrients, brings water containing high pCO2 closer to 
the surface in the east. This is supplemented by the Peruvian upwelling system which 
brings water 100-200 per cent supersaturated in pCO2 to the surface. 
 
During El Niño periods, however, reduced trade winds decrease the upwelling rate. A 
deepening of the thermocline further reduces surface pCO2 levels. These changes have a 
profound effect on the flux of CO2 across the air-sea interface. For instance, 
approximately 0.9×1015 g C was released as CO2 into the atmosphere in the eastern 
Equatorial Pacific during 1996, a normal year. In contrast, from the period from spring 
1997 to spring 1998 during an El Niño event, only 0.2×1015 g C was released. Such a 
large reduction in the build-up of an important greenhouse gas in the atmosphere is 
expected to have reduced the greenhouse warming during that period as well. 
 
- 
- 
- 
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