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Summary 
 
A description of the dynamical properties of oceanic wave is presented, which 
comprises wind waves at the sea surface, internal waves and inertial oscillations and 
inertial waves, Kelvin waves and Rossby waves. The dispersion relations and wave 
guide properties are discussed with the aid of free waves. In order to illustrate the 
different roles played by the various wave types in shaping the oceanic responses to 
wind forcing, we consider examples of forcing a coastal ocean. Processes such as 
geostrophic adjustment by radiating away inertial waves, establishment of an 
undercurrent by propagating Kelvin waves, and the dispersion of coastal currents by 
Rossby waves are discussed. The specific properties of equatorial trapped waves and 
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their dynamical role are also described. 
 
1. Introduction 
 
The most familiar example of oceanic waves is that of the wind waves at the sea 
surface. But this is only one example of a variety of oceanic waves. The spectrum of 
oceanic motions covers a broad range of scales, seconds to years and centimeters to 
thousands of kilometers. This range is also reflected in the various types of oceanic 
waves. Physical mechanisms of waves can be characterized by the restoring forces, 
which are for example gravity, density variations, and rotation of the earth, and 
topography in conjunction with rotation. 
 
Gravity waves occur as disturbances of the sea surface or as internal waves at density 
gradients in the interior of the sea. Wind waves and the high frequency part of the 
internal wave spectrum are independent of the effects of earth rotation. 
 
The Coriolis force due to earth rotation controls the properties of inertial waves, 
topographically or coastally trapped waves, which are related to changes in the bottom 
topography, and Rossby waves, which owe their existence the change of inertial 
frequency with latitude. 
 
Waves communicate information of forcing events through the ocean. There are two 
important aspects: (1) The dispersive properties of waves and the existence of wave 
guides. These properties tell us how the waves are controlled by the restoring forces and 
how they propagate in space and time. (2) The generation of waves by external forcing 
and their role in shaping oceanic responses and dynamical balances. 
 
An example of a simple type of waves is that of plane waves which can be used to 
characterize wave properties 
 

0( , ) exp( ),x t i t ikx= −ζ ζ ω   (1) 
 
where 0ζ  is the amplitude, ω  the frequency, 2

T= πω  ( T- wave period), and k the 

wavenumber, 2
Lk = π  (L- wavelength). The phase speed c and the group speed rcg  are 

 

c k= ω ⁄            and             r
dc
dk

= ωg .  (2) 

 
Waves are dispersive if the phase speed is different from the group speed. 
 
Although simple sinusoidal waves are not typically found in the sea, they are useful as a 
mathematical expression because real oceanic waves can be represented as a 
superposition of very many sinusoidal waves with different frequencies and 
wavenumber by means of Fourier integrals. Such packages of sinusoidal waves can 
propagate without changing their shape if they are non-dispersive waves. For dispersive 
waves the different Fourier components propagate with different phase speeds and 
hence the initial wave package would disperse into various parts. 
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2. Basic equations 
 
The dynamics of waves are governed by the basic hydrodynamic and thermodynamic 
equations. In the following we need the basic equations in different approximations 
which reflect different scales and the role of earth rotation. For the surface waves we 
need the Euler’s-equation 
 

0

1 p
t

+ ⋅∇ = − ∇ +
∂
∂ ρ
v v v g ,  (3) 

where ( , , )=v u v w  are the components in ,x y  and z  directions respectively, p is the 
pressure, and (0,0, )= −g g  is the gravity acceleration of the earth with the magnitude 
g . The density of the water, 0ρ , can be assumed constant. The incompressibility of 
water implies 
 

0.∇⋅ =v   (4) 
 
Let ( , , )z t x= ζ y  and ( , )z H x= − y  be the equations for the free sea surface and for the 
bottom. Then the boundary conditions for the vertical current component are  
 

,t x= + +ζ ζ ζyw u v    for  ( , , )z x t= ζ y ,              (5) 
 
and 
 

,xH H− = + yw u v   for  ( , )z H x= − y   (6) 
 
We denote partial derivatives also by the subscripts , ,x zy,  or t. For horizontal flows the 
condition that the motion cannot penetrate through walls is given by the dot product 
 

0,⋅ =v n   (7) 
 
where n  is the normal unit vector of a lateral boundary. In an infinite ocean the 
dependent variables such as v  and p are required to remain bounded. 
 
The governing equations for wave processes affected by earth rotation are linearized 
Boussinesq equations which follow after several traditional approximations. 
 

,t xf p X− + =u v   (8) 
 

,t f p Y+ + =yv u   (9) 
 

2 0,tt ztp N+ + =w w   (10) 
 

0,x z+ + =yu v w   (11) 
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where the inertial frequency f, is defined as Coriolis parameter at a given latitude, ϑ , 
 

2 sin ,f = ϑΩ   (12) 
 
with Ω  being the magnitude of the angular frequency of the earth rotation 2

1day= πΩ . 

Further, N 2, is the Brunt-Väisälä- Frequency. 

2 dN
dz

= −
ρ

ρ
g   (13) 

which is a measure of the density stratification. The pressure p in Eqs.(8-10) the 
dynamical pressure is in the Boussinesq approximation, i.e., the hydrostatic contribution 
was subtracted. 
 
3. Gravity Waves at the Sea surface 
 
3.1. Free Waves 
 
For simplicity we consider waves which propagate in x -direction and are independent 
of y . These waves are non-rotational and this implies the existence of a potential 
function, φ , i.e., 
 
= ∇φv   (14) 

 
Since the acceleration of gravity can also be expressed as the gradient of a scalar 

( )z= ∇ −g g  the equation of motion can be reduced to a Bernoulli equation for the 
potential function, φ . 
 

2( )
2tp z= − − − ∇
ρ

ρ ρφ φg   (15) 

 
From (4) we find 
 

0.Δ =φ   (16) 
 
Moreover we consider a flat bottom, 0H∇ = , where (6) reduces to  
 

( , ) 0x H− =w  or  ( ) 0.z H− =φ   (17) 
 
At the sea surface, ( , )z x t= ζ  we have 
 

( ) .z t x x= +φ ζ ζ φ ζ   (18) 
 
For small amplitude motion the nonlinear terms can be neglected and the conditions at z 
= 0 are  
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t z=ζ φ      and      t= −ζ φg   (19) 
 
and the bottom coordination  for z H= −  is 
 

0.z =φ   (20) 
 
The set (16), (19), and (20) forms a boundary value problem, which has a periodic 
solution with respect to x  and t. The solution is  
 

0
cosh( ( ))( , , ) cos( ).

sinh( )
k z Hx z t kx t

k kH
+

= −
ω

φ ζ ω   (21) 

 
The corresponding eigenvalue condition determines the dispersion relation 
 

2 tanh( )k kH=ω g   (22) 
 
For the remaining dependent variables it follows 
 

0
cosh( ( )) sin( ),

sinh( )
k z H kx t

kH
+

= − −ζ ω ωu   (23) 

 

0
cosh( ( )) cos( ),

sinh( )
k z H kx t

kH
+

= −ζ ω ωw   (24) 

 
0 sin( ).kx t= − −ζ ζ ω   (25) 

 
From the dispersion relation (22) we find the phase and group velocity as 
 

tanh( ).kc kH
k

= =
ω g   (26) 

 
and 
 

2(1 ).
2 sinh(2 )r

d c kHc
dk kH

= = +
ω

g   (27) 

 
The behavior of the phase and group velocity is shown in terms of functions of the 
wavelength in Figure 1, (solid line). 
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Figure 1: Phase- and group velocity of wind wave versus wavelength, shown for water 
depth 15 m. Shown are the full relations (solid), the deep water relation (dash-dot), and 

the shallow water relations (broken). 
 
3.2 Energy Considerations 
 
Multiplication of 0t xp+ =ρu , and 0t zp+ =ρw  by u  and w  respectively, and 
addition of the results gives an equation for the kinetic energy, 
 

2 2( ) 0.
2

p
t

+ +∇⋅ =v∂ ρ
∂

u w   (28) 

 
The change of kinetic energy in time is balanced by the divergence of the energy 
flux, pv . The kinetic energy per unit horizontal area is found by averaging over a 
wavelength and by vertical integration 
 

0 2 2 2
00

1 ( )
2 4

L
kin H

E dx dz
L −

= + =∫ ∫
ρ ρ

ζ
g

u w   (29) 

 
The potential energy is given by the work required to deform the sea surface 
 

2
00 0 4

L
potE dx dz z

L
= =∫ ∫

ζρ ρ
ζ

g g   (30) 

 
The average kinetic and potential energies are equal. This fact is known as the principle 
of equipartition of energy. Introducing the mean squared displacement of the sea 
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surface, 2ζ , 
 

2
2 2 0

00
1 sin ( )

2
dx kx t= − =∫

ζ
ζ ζ ω

λ

λ
  (31) 

 
we find 
 

2 2
02kin potE E E= + = =

ρ
ρ ζ ζ

g
g   (32) 

 
The average energy flux through a vertical plane, e.g. 0x = , is given by the integral 
over one wave period, τ , 
 

0

0
1

rH
F dt p dz c E

−
= =∫ ∫

τ

τu gu   (33) 

 
The energy is transported with the group speed. 
 
3.3 Deep Water Waves 
 
For deep water waves the wavelength is smaller than the water depth, 1kH . Since 
tanh( ) 1kH →  for large arguments we find from (22) 
 

,k=ω g   (34) 
 
 and the phase and group speeds follow as 
 

c
k

=
g           and          1 .

2 2r
cc

k
= =g

g   (35) 

  
For water deeper than half the wavelength, the wavelength is the only variable which 
affects the wave speed. The behavior of the phase and group velocity of deep water 
waves are shown as functions of the wavelength in Figure 1, (dash-dot line) 
 
Noting that for 1,kH  
 
cosh( ( )) sinh( ( )) ,

sinh( ) sinh( )
kzk z H k z H e

kH kH
+ +   (36) 

 
applies, we obtain for the dependent variables 
 

sin( ),kz
o e kx t− −ζ ω ωu =   (37) 

cos( ),kz
o e kx t= −ζ ω ωw   (38) 
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sin( ).o kx t= − −ζ ζ ω   (39) 
 
3.4 Shallow Water Waves 
 
For shallow water waves the wavelength, L, is by definition much larger than the water 
depth, H, i.e., 1kH . Then an expansion of the dispersion relation (22) gives 
 

3
2 ( )( ....),

3
kHk kH= − +ω g   (40) 

 
or 
 

.k=ω gH   (41) 
 
The shallow water phase speed and the group speed are equal, r kc c H= = =ω

g g  and 
the water depth is the only variable which affects the wave speed. Shallow water waves 
show no dispersion. The phase and group speeds of shallow water waves are straight 
lines in Figure 1, (dashes). 
 
The dependent variables are 
 

sin( )o
oc kx t

H
= − −

ζ
ωu ,  (42) 

 
( ) cos( ),o
z H kx t

H
+

= −ζ ωw   (43) 

 
sin( ).kx t= − −οζ ζ ω   (44) 

 
- 
- 
- 
 

 
TO ACCESS ALL THE 44 PAGES OF THIS CHAPTER,  
Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx 

 
 
Bibliography 

Gill, A.E. 1982 Atmosphere Ocean Dynamics Academic Press New York, 662pp. [A standard textbook 
which gives an good description of oceanic waves and related problems.] 

Komen, G.J., L.Calveri, M.Donelan, K.Hasselmann, S.Hasselmann and P.A.E.M. (1994) Dynamics and 
Modelling of Oceanic Waves, Cambridge University Press 532pp. [Advanced theoretical description of 
the state of the theory of wind generated waves.] 

Kundu, P.K.Fluid Mechanics (1990), Academic Press, San Diego, 638pp. [Textbook on hydrodynamics 

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-18-02-03


UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

OCEANOGRAPHY – Vol.I - Waves in the Oceans - Wolfgang Fennel  

©Encyclopedia of Life Support Systems (EOLSS) 

with several chapters on waves.] 

LeBlond, P.H. and L.A.Mysak (1978) Waves in the Ocean, 602pp, Elsevier Oceanographic Series 20, 
Amsterdam. [Covers a broad range of oceanic waves.] 

Mellor, G.L. (1996) Introduction to Physical Oceanography, Springer-Verlag New York, 260pp. [Gives 
the background in oceanography including waves needed for further studies.] 

Pedlosky J. (1979) Geophysical Fluid Dynamics, 624 pp, Springer-Verlag New York. [Provides a detailed 
discussion of Rossby waves in the context of the quasi-geostrophic theory.] 

Young, I.R. (1999) Wind Generated Ocean waves, Elsevier Ocean Engineering Book Series 2, 
Amsterdam, 288pp. [Presents comprehensive material on prediction models of wave generation.] 

 
Biographical Sketch 
 
Wolfgang Fennel received his PhD in theoretical physics from the University of Rostock in 1973. After 
an initial career in statistical physics he turned his scientific interests to theoretical oceanography and 
since 1976 he worked in the Institute for Marine Sciences in Warnemünde. His habilitation work was on 
the theory of turbulent diffusion in the sea. Later he expanded his inerests to oceanic waves and coupling 
of physical and biological models. Since 1992 he is head of the department of physical oceanography and 
instrumentation at the Baltic Sea Research Institue and since 1994 he is also professor at the University of 
Rostock. He is author of numerous scientific papers covering turbulent diffusion, responses of the ocean 
to wind and buoyancy forcing,  coupling of physics and biology in models and other topics of 
oceanography. Wolfgang Fennel was a vice-president of SCOR from 1998 to 2002. 


