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Summary 
 
Data in the form of counts that are also geo-referenced may arise in a wide variety of 
situations. This chapter discusses a number of spatial processes that may be used to 
model such data. The fundamental categorization used here is to consider processes as 
having either random or fixed spatial indices. The discussion focuses on the types of 
models that are commonly used in the analysis of spatial count data, and a number of 
issues that are relevant for those modeling approaches. Relatively little coverage is 
given to statistical techniques for estimation and inferential procedures, other than those 
that are intimately connected with the objectives of model formulation. This emphasis 
on modeling issues, at the expense of technical considerations in estimation and 
inference is purposeful. It is not possible, or at least not advisable, to discuss details of 
how a model for spatial counts might be analyzed without first considering how various 
models arise in the first place. Model formulation and specification are closely 
connected with the scientific phenomena that are the focus of investigation, that is, the 
question of why spatial counts are to be analyzed.  
 
Spatial counts may result from the aggregation of event data, such as occurs in the 
analysis of point processes using quadrat summaries, or the occurrence of a relevant 
disease within small geographic units or areas. Alternatively, counts may result from 
observation of a set of discrete random variables, each of which has possible values in 
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the set of non-negative integers. Many models for such situations are formulated for 
continuous Gaussian random variables, and a common analysis of counts is to first 
perform a transformation that renders models for Gaussian random variables more 
appropriate than they would be for raw counts. While this approach is still popular in 
the analysis of counts, statistical advances over the past 10 years have made models for 
discrete, integer-valued random variables more accessible to the scientific community. 
These include Markov random field models and hierarchical models for conditionally 
independent Poisson data with spatially dependent latent processes. Although the 
analysis of these models may require computationally-intensive statistical techniques 
such as Monte Carlo maximum likelihood and Markov Chain Monte Carlo, their use 
allows inference and prediction to be made directly on the scale of interest, namely on 
the scale of spatial counts. 
 
1. Introduction 
 
Spatial count data may be considered to be any collection of observations with possible 
values in the set of non-negative integers {0,1…} and for which each observation is 
geo-referenced, that is, corresponds to a particular spatial location. Such data may arise 
in a number of ways, either from direct observation of quantities with integer values or 
as the result of the aggregation of observed quantities which represent presence or 
absence of some characteristic. A convenient way to organize the possible scenarios 
leading to spatial count data is to consider situations in which the spatial locations 
corresponding to observed quantities are determined by where the objects of such 
observation happen to occur, and situations in which the spatial locations are fixed a 
priori. Call these two categories situations with random spatial indices and non-random 
spatial indices, respectively. 
 
A random field representation for spatial processes will be used throughout this chapter. 
Let s denote a spatial location variable. For example, s  might represent the latitude 
u and longitude v of any point within a given geographic region D . This presentation 
will consider primarily two-dimensional spatial locations so that 2D R⊂ , but most of 
what is contained here generalizes to the case in which D is a subset of the d-
dimensional real numbers. A spatial process is represented as, 
 

{ ( ) : },Z D≡Z ∈s s  (1) 
 
where ( )Z s may be a random variable at the locations , and D may be a random set on 
which ( )Z ⋅ is defined. This chapter will consider only univariate ( )Z ⋅ , but the definition 
of equation (1) is easily extended to deal with vector-valued random variable. In the 
case of random spatial indices, D in (1) is taken to be a random set (i.e., D may vary 
among realizations of the process Z ) and ( )Z ⋅ is either non-random (with fixed value 1) 
or as also random. In the case of non-random spatial indices D is considered a fixed set 
and ( )Z ⋅ a random variable. 
 
2. Random Spatial Indices 
 
Spatial count data may arise from the analysis of spatial point patterns, which is 
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concerned with the spatial pattern generated by observing locations at which a particular 
event occurs, such as the locations at which a particular species of plant is found. 
Consider a situation in which objects exist at a finite set of locations and fail to exist at 
all other locations, which may be formulated as in (1) with ( )Z ≡1s and D consisting of 
a random point process,  that is, a collection of points at which (the now non-random) 
Z is defined. This formulation allows a unified framework within which to extend the 
basic definition of point processes to include marked processes in which both the set of 
locations of objects D and an associated value (or ‘mark’) ( )Z ⋅ are random, although 
that possibility will not be considered in the sequel. Spatial point processes lead to data 
represented as counts from an aggregation process in which the number of events 
occurring in a set of sub-regions is tallied, but the specific locations may not be. The 
analysis of spatial point processes is covered elsewhere in this encyclopedia and will not 
be discussed here, but the following is included to indicate the way that point processes 
lead to data in the form of spatial counts.  
 
Consider a simple point process in which ( )Z ≡1s for all D∈s , with D random. 
Suppose that a given study area A  has been divided into a set of sub-regions or 
quadrats { : ,..., }K≡ =kQ k 1Q . For D A∈ , a description of the spatial pattern of events 
(or occurrences) results from counting the number of events in each quadrat. Formally, 
the equivalence of information provided by knowing D and knowing the number of 
events in each element of Q requires that we be able to count the number of events in 
every possible division of A  into quadrats (technically, all bounded sets contained in 
the Borel σ -algebra of the area 2A⊂R ). The equivalence of information provided by 
knowing the location of each point in D and knowing counts in collections of quadrats 
leads to the comparison of counts with what would be expected under a model or 
‘complete spatial randomness’, that is , a model in which quadrat counts are realizations 
of a homogeneous Poisson process. This comparison underlies some of the common 
indices of spatial pattern, such as David and Moore’s ‘index of clumping’, Douglas’ 
‘index of cluster frequency’, and the ‘patchiness’ index of Morisita. The use of such 
techniques will not be discussed further here as they do not truly constitute methods for 
the spatial analysis of count data, although they are valuable exploratory tools in the 
description of point pattern in spatial settings. 
 
Aside from the production of various indices of spatial pattern, methodologies for the 
analysis of spatial counts that have originated from the analysis of spatial point patterns 
involve fitting models of various stochastic processes to data in the form of quadrat 
counts. The stochastic process models considered are typically models for point 
processes rather than models that describe the distributions of counts directly. The 
connection between a stochastic model of a point process and spatial count is made on 
the basis of the “intensity function” of the stochastic process under consideration. The 
intensity of a process may be defined asλ , where, for a bounded area Β,Ε (y points in 

)B =λ ( area of )B . The better-known stochastic process models include the clustering 
processes of Neyman-Scott and Cox, and processes to describe spatial inhibition such as 
the Strauss process. The Neyman-Scott process is the best-known example of a larger 
class of models known as Poisson cluster processes. 
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3. Non-random Spatial Indices 
 
Spatial count data arise naturally from the observations, at a set of fixed spatial 
locations, of quantities that have possible values in the set of non-negative integers. In 
this setting, the spatial domain D of the general spatial process (1) is taken to be a fixed 
set, and the random variable ( )Z s to have possible values {0,1…}. Even with non-
random spatial indices we distinguish between two possibilities, those being continuous 
spatial indices and discrete spatial indices. Models used with problems conceptualized 
as having continuous spatial index are typically categorized as geostatistical models, 
while models with discrete spatial indices are commonly called lattice or Markov 
random field models. The distinction lies in the range of possible values for the spatial 
index s in (1). In the case of a continuous index we have that s  can vary continuously 
withinD , while for a discrete index 1 2{ , ,...} D≡ ⊂s s s . It is possible to simply define 
D as a set of discrete elements in the first place, but the notation used here may be 
preferred since unobserved locations are often of interest. With either continuous or 
discrete index cases, interest focuses on describing the probability distribution of the 
random field Z . 
 
3.1 Models with Continuous Spatial Index 
 
While models having continuous spatial index are conceptualized as the random field 

{ ( ) : }Z D≡ ∈s sZ with continuously varyings , any application will depend on using 
observations at a finite number of locations{ ( ) : }iZ i = n1,...,s . Theoretical model 
quantities are defined in terms of the process Z , but estimation of those quantities must 
be accomplished using the observed values of{ ( ) : }iZ i = n1,...,s . Such models are 
typically called geostatistical models, since their origin was in the geological sciences. 
Underlying the geostatistical approach is an implicit model of the form  
  

( ) ( ) ( ),Z Dδ= + ∈μs s s s , (2) 
 
Where ( ) { ( )}E Z=μ s s and ( )δ s is a zero-mean spatial process. Various assumptions are 
made about the behavior of the mean process { ( ) : }D∈μ s s and the spatially dependent 
error process { ( ) : }Dδ ∈s s to facilitate estimation of the mean at any location and 
prediction of the observable random variable 0( )Z s at any location 0s that is not 
included in the set of observed locations. Prediction, in particular, is conducted using a 
set of techniques known as kriging.  A kriging predictor is a linear function of the data, 
 

0( ( )) ( ),i i
i

Z Z=∑λ
n

p s s  (3) 

 
where the coefficients { : }i i =λ n1,..., are chosen so that the predictor is optimal in the 
sense that it minimizes the mean squared prediction error among all linear predictors. 
Restrictions are often placed on the coefficients of (5) to insure that the predictor is also 
unbiased, that is, 0 0{ ( ( ))} ( )E Z = Zp s s .  
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Geostatistical analysis and the construction of kriging predictors may be considered 
‘distribution free’ in the same sense that ordinary least squares estimators of regression 
parameters in simple linear regression are free of distributional assumptions. But, just as 
in the regression case, an implicit near-Gaussian property is invoked for the purposes of 
inference and, in particular, to form prediction intervals. Indeed, the entire concept of 
restricting attention to linear estimators and predictors has a connection with a Gaussian 
distribution for which the conditional mean 
 

0[ ( ) |{ ( ) : }]iE Z Z i = n1,...,s s  is linear in the values{ ( ) : }iZ i = n1,...,s . In this case the 
optimal (minimum mean squared error) linear predictor is also the optimal predictor; 
this will not be true for non-Gaussian processes.  
 
The connection of standard geostatistical analysis to spatial processes that are Gaussian 
has led to the practice of transforming spatial count data to produce Gaussian-like 
behavior on the transformed scale. Similar to transformations used in linear regression 
analysis the focus is often on producing homogeneity of variance, with symmetry in 
distribution frequently occurring as a concomitant effect. Perhaps the most common 
transformation of count data is some form of square root transformation, although 
logarithmic transformations are also frequently used. These transformations have been 
employed, for example, in the analysis of cancer mortalities in Scotland and in the 
analysis of data on sudden infant death syndrome.  
 
- 
- 
- 
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