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Summary 
 
This article examines the area precipitation measurement problem. Due to the large 
space and time variability of rainfall, the precise evaluation in real time of mean area 
estimates poses a difficult problem. These estimates are traditionally obtained from a set 
of rain gauges, located at several points in the area but can be substantially improved 
when the measurements of a meteorological radar are available. However, while gauges 
give better quality measurements at isolated points, the radar gives a much more 
detailed picture of the spatial pattern of precipitation. In view of this, statistical methods 
are needed to look for the optimal way of merging the measurements from the two 
devices: radar and rain gauges. After a brief account of the usual deterministic methods 
of radar calibration, the article describes two important radar calibration techniques: 
Kalman filter and cokriging. The first one puts the emphasis on the time correlation 
structure of the precipitation and the second on its spatial correlation pattern. The main 
theoretical concepts and properties of the two methods are explained as well as their 
application to the area rainfall estimation problem. Particular attention is given to the 
construction, estimation and assessment of rainfall measurement statistical models. 
 
1. The Area Precipitation Measurement Problem. 
 
Accurate area rainfall measurements have an increasing importance in all applications 
of Meteorology. Recent advances in Hydrology show the need for a better precision in 
real-time measurement of area precipitation for operational river-flow and flash-flood 
forecasting. However, it is difficult to obtain good measurements of the precipitation 
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field because of its large spatial and time variability. Rain gauges provide precise point 
estimates but they are not able to picture the spatial pattern of rainfall. A high-density 
telemetered gauge network is costly and difficult to maintain but it may fail to give the 
real spatial structure of precipitation. 
 
An alternative way is the use of weather radar that provides measurements in a thin grid 
of cells, covering inaccessible areas where gauge installation is not possible. The cells 
may vary in size from 2kmx2km to 5kmx5km. Nevertheless, although weather radar 
may outline more accurate rainfall isopleths, their point estimates are poor and cannot 
approach the accuracy of gauges observations. In view of this, radar rainfall estimates 
have to be calibrated with the help of a certain number of gauges. The best solution is to 
use the two types of measurements – radar and gauges – and to look for an optimal way 
of merging them, taking into account the different and complementary nature of the two 
sensors. 
 
A first approximation of the rainfall intensities throughout the radar field is obtained 
with the standard Z-R relationship 
 
Z = ARb, (1) 
 
where Z stands for rainfall and R for reflectivity. Typically, A = 200 and b = 1.6. If rain 
gauges observations are available at some sites along the measurement area, these can 
be used to improve the first estimates with the help of some calibration technique. Let 
us consider G t = gt

1 gt
2 ... gt

M( )T
 as the vector of the gauges measurements in time t 

at M different sites, and rt = rt
1 rt

2 ... rt
M( )T

the corresponding vector of the radar 
measurements at the same time and places. A simple correction procedure consists in 
evaluating a single calibration factor to be applied uniformly over the whole area. Under 
this approach, the calibration factor or bias at time t, that we will represent by bt, can be 
evaluated by the formula 
 

bt = gt
i

i =1

M

∑ rt
i

i =1

M

∑  

 
or 
 

bt =
1

M

gt
i

rt
i

i=1

M

∑ . 

 
The first equation assigns each observation a weight proportional to its value and the 
second equation gives equal weight to all the sites, independently of its value. However, 
it has been noticed that the relation g/r may vary considerably from place to place. 
Hence, a better adjustment may be achieved considering the several factors at each site, 
bt

i = gt
i rt

i , i = 1,...,M, and applying to each radar cell the factor corresponding to the 
closest calibration gauge. Also, a different calibration factor for each cell may be 
obtained using an interpolation algorithm, for example, multiquadric interpolation. 
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The uncertainty of the relationship between radar and gauge estimates – varying 
randomly both in time and space – makes it necessary to use statistical methods in order 
to improve the radar calibration process. The more simplistic procedures, as described 
above, provide quick methods of correcting the area estimates but do not take into 
account some important features of the system – for example, the gauges measurement 
errors or the temporal correlation structure of the bias – and do not provide a standard 
error of the estimate. Hence, better precision may be achieved with the use of more 
sophisticated statistical procedures. These allow a rigorous and clear mathematical 
modelling of the problem and produce good results in practice. The most common are 
those based on the Kalman filter or Cokriging techniques. They will be presented 
through the next two sections. 
 
2. The Kalman Filter Approach. 
 
This approach formulates a mathematical model for the system incorporating two 
equations: one that relates radar and gauge observations and another that describes the 
time variation of the bias. The Kalman filter is an iterative procedure that estimates the 
bias at each time t, on the basis of these two equations. The advantages of Kalman filter 
over simply computing g/r ratios are: 
 
1. taking into account the gauges errors; 
2. providing the standard error of the estimated bias; 
3. taking into account the temporal correlation structure of the bias; 
4. avoiding the instability of the ratio g/r, when r is small. 
 
The method gave good results both in simulated and practical studies and is simple to 
implement in the computer. 
 
2.1. A State Space Representation of the Problem. 
 
We will consider first the case where the same single factor is applied to the whole radar 
field. Under such circumstances the equation relating radar and gauges observations, 
called the measurement equation, becomes 
 
G t = rtbt + e t   (2.a) 
 
where et is a sequence of a white noise Mx1 vector of errors with mean zero and 
variance/covariance matrix E[etet

T] = Σ. The equation describing the temporal behaviour 
of the bias, called the state or transition equation, may be given by an autoregressive, 
AR(1), process, 
 
bt +1 = μ +φ bt − μ( )+ ε t +1  (2.b) 
 
where εt is a white noise sequence with mean zero and variance τ2, μ is the mean value 
of the bias and φ the lag-1 autocorrelation. The set of the two equations (2.a) and (2.b) is 
called the state space representation of the problem. Very commonly, μ is taken to be 0 
and φ = 1 which originates a random walk process for the calibration factors sequence. 
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This model is based on the assumption that the bias is equally likely to increase or 
decrease over the next time step and avoids the problem of the estimation of the 
constants μ  and φ . However, as it produces a non-stationary behaviour for the bias, 
sometimes better results may be achieved using a stationary autoregressive process with 
a high correlation parameter φ. 
Another possibility is to allow a different calibration factor at each calibration gauge 
location, bt

i , 1≤i≤M, each one described by the equations 
 
gt

i = rt
ibt

i + et
i  

 
and 
 
bt +1

i = μi + φ i bt
i − μ i( )+ ε t +1

i . 
 

In this case, for each i, et
i  and ε t

i  are white noise error sequences with mean zero and 
variances σ i

2  and τ i
2 , respectively. 

 

Considering Bt = 
T1 2 M

t t tb b b⎡ ⎤⎣ ⎦  the vector of the calibration factors at each 
location, a general mathematical formulation for the problem, including both the single 
and multiple factors formulas, may be given by 
 

t t t t= +G R B e  
 
and 
 
Bt +1 = μ + F Bt − μ( )+ ε t +1 , 
 
where Gt and Bt are now random vectors, Mx1 and kx1, respectively. The sequences of 
error vectors et (Mx1) and εt (kx1) are white noise with variance/covariance matrices Σ 
and Τ. Other parameters of the model are the kxk matrix F of coefficients and the kx1 
vector μ of the mean values of the Bt process. Rt is a matrix built with the radar 
observations. 
 
The case of a single calibration factor corresponds, in this formulation, to taking k = 1 
and Rt the column vector of radar measurements at the M different gauge locations. The 
transition equation is, thus, a scalar equation, with F = φ, μ the mean value of the bias 
sequence and Τ = τ2. In the multiple factor approach, Rt is an MxM diagonal matrix 
which elements are the radar observations, rt

i , 1≤i≤M. The covariances matrices Σ and Τ 
are both diagonal with elements σ i

2  and τ i
2 . The matrix F is also MxM diagonal, with 

elements φi which, for the sake of simplicity, will be considered to be equal. 
 
2.2. The Kalman Filter Algorithm 
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Once the problem is formulated in a state space representation, the Kalman filter may be 
applied. It consists of a recursive method of providing, at each time t, an estimator for 
the state vector Bt. This estimator is simply the orthogonal projection of the state vector 
onto the observed variables G1,...,Gt, or, equivalently, it is the minimum mean square 
error (MSE) linear estimator based on the gauges observations up to time t. 
 
Each iteration consists of a two-step procedure. The first is an updating step, where the 
most recent observation Gt is incorporated in the estimation of the bias Bt. Let us 
consider that at time t-1, the estimator of Bt is provided by | 1

ˆ
t t−B  with mean square error 

 

( )( )T

| 1 | 1 | 1
ˆ ˆ

t t t t t t t tE− − −
⎡ ⎤= − −⎢ ⎥⎣ ⎦

P B B B B . 

 
Then, a forecast for the next set of gauges observations is given by 
 

| 1 | 1
ˆ ˆ

t t t t t− −=G R B . 
 

It may be easily seen that the MSE of this forecast is: 
 

( )( )T T
| 1 | 1 | 1

ˆ ˆ
t t t t t t t t t tE − − −

⎡ ⎤− − = +⎢ ⎥⎣ ⎦
G G G G R P R Σ . 

 
When Gt is available, the actual error of this forecast may be computed, | 1

ˆˆ t t t t−= −e G G , 
and a new estimator for Bt  is obtained through a weighted average of the estimator in 
time t-1 and the forecast error it produced for the observation Gt, namely: 

 

( )| | 1 | 1
ˆˆ ˆ

t t t t t t t t− −= + −B B K G G . 

 
The matrix Kt is called the Kalman gain matrix and is computed through the formula 

 

( ) 1T T
| 1 | 1t t t t t t t t

−

− −= +K P R R P R Σ . 
 
Note that, if | 1

ˆ
t t−B  is the orthogonal projection of Bt onto the gauges observations up to 

time t-1, the new updated estimator, |
ˆ

t tB , is the orthogonal projection onto the same 
observations and Gt. The MSE of the updated estimator may be obtained through the 
recursive formula 
 

( ) 1T T T
| | 1 | 1 | 1 | 1t t t t t t t t t t t t t t

−

− − − −= − +P P P R R P R Σ R P . 
 

This completes the updating procedure. The second step is a prediction step that 
provides a forecast for the next value of the vector of calibration factors, 
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1| |
ˆ ˆ

t t t t+ =B FB  
with mean square error 
 

T
1| |t t t t+ = +P FP F Τ . 

 
From now on, the same steps can be repeated. Also, to start the procedure, initial values 
for 1|0B̂  and its MSE, 1|0P , are needed. Clearly, when there are no observations available, 
the projection of the calibration factor onto a constant is just its mean value. Then, when 
using a stationary model, that is,  |φ| < 1, its MSE corresponds to its variance which is 
given by τ2/(1-φ2). If  |φ| = 1, the process has no finite variance, and the starting value 
for the MSE is usually taken as any large constant. Nevertheless, the starting values 
have not much influence on the behaviour of the estimation procedure, except for the 
first few iterates. 
 
2.3. Estimating the Model Parameters 
 
A major problem arising in the application of the Kalman filter algorithm is that the 
variance/covariance matrices Σ and Τ must be estimated which involves some 
difficulties. In many applications it is common to use maximum likelihood (ML) 
estimation because, when the error terms in both equations are normal, the distribution 
of Gt conditional to its past (G1, G2,...,Gt-1), is Gaussian with mean value | 1

ˆ
t t t−R B  and 

covariance 
 

T
| 1t t t t t−= +Ω R P R Σ , 

 
for any t≥1. Hence, the log-likelihood may be computed and maximized numerically 
with respect to the unknown parameters Σ and Τ and, if necessary, also F. 
 
However, precipitation data clearly deviate from the Gaussian curve, showing a highly 
skewed distribution and including several values equal to zero. Actually, the fact that 
the error terms are unobservable makes it difficult to adjust a specific distribution to 
them. Consequently, distribution-free methods are the most appropriate for this 
problem. 
 
One possible way of constructing such estimators is to obtain linear functions of the 
error terms by appropriately differencing the observations and equating their empirical 
and theoretical variances, thus deriving moment estimators. To explain the basic idea of 
this method, we will assume, to simplify things, that μ = 0. Let us consider, first, the 
multiple factor approach where, at each location and for any k ≥ 1, 
 
gt + k = rt + kbt + k + et +k . 
 
To simplify notation, as the procedure will be the same for each location i, we will omit 
the index i, in the multiple factor approach.  As the bias follows an AR(1) process, it 
verifies the equation, 
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bt +k = φkbt +φ k −1ε t +1 + ... + φε t + k −1 + ε t + k . 
 
Consequently, and supposing that φ is known, if we define the quantities   
 

dt (k) = gt + k

rt + k

− φk gt

rt

= φk −1ε t +1 + ... + φε t +k −1 + ε t + k +
et +k

rt + k

− φ k et

rt

,  

 
their variances are given by 
 

2 2
2 2

2 2 2
2

2
2 2

2 2

1 1 if 1;
1

( )
1 if 1.

k k

t k t
t k

t k t

r r
E d k

k
r r

φ φτ σ φ
φ

φτ σ φ

+

+

⎧ ⎛ ⎞−
+ + <⎪ ⎜ ⎟−⎪ ⎝ ⎠⎡ ⎤ = ⎨⎣ ⎦ ⎛ ⎞⎪ + + =⎜ ⎟⎪ ⎝ ⎠⎩

 

 
Now, if D (k)  represents the time average of the N-k values of dt

2 (k ) , then 
 

D(k) = E(D (k)) = E
1

N − k
dt

2 (k)
t =1

N− k

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = τ 2Ψ (k) +σ 2 H(k)  

 
where 
 

2

2

1 if | |<1;
( ) 1

if | |=1.

k

k
k

φ φ
φ

φ

⎧ −
⎪Ψ = −⎨
⎪
⎩

 

 
and 
 

H(k ) =
1

N − k

1

rt +k
2

+
φ2k

rt
2

t =1

N −k

∑ . 

 
If there are values of t for which either rt or rt+k are zero, the differences dt(k) cannot be 
computed and the averages D (k)  and H(k) will be taken only over the smaller number of 
terms such that both radar observations are not zero. Finally, considering any pair of 
indices k and l a system of the form 
 

( ) ( );
( ) ( );

D k D k
D D

⎧ =
⎨

=⎩
 

 
can be constructed and the solution will provide estimators for τ2 and σ2, namely, 
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2

2

( ) ( ) ( ) ( )ˆ ;
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )ˆ .
( ) ( ) ( ) ( )

H D k H k D
k H H k
k D D k
k H H k

τ

σ

⎧ −
=⎪ Ψ − Ψ⎪

⎨
Ψ − Ψ⎪ =⎪ Ψ − Ψ⎩

 

 
These estimators are unbiased and consistent. Ideally, the best choice for the indices 
should be k = 1 and    = 2 because they use more observations and originate more 
efficient estimates. However, a problem that may occur when using this method is that 
some pairs of indices may originate negative values for the variances. If so, another pair 
of indices should be tried. In general, fixing one of the indices in a small value, say 1, 
and increasing the other index will result on estimators belonging to the space of 
parameters. 
 
The same method can be used to estimate the variances and covariances in the single 
factor model. To simplify things, let us suppose that the matrix Σ is diagonal, that is, 
that the gauges errors are not correlated which is something very likely to occur in 
practice. Then we have to estimate τ2 and σ i

2 , for i = 1,...,M. The same type of 
differences are used at each site i: 

 

dt
i (k) =

gt +k
i

rt + k
i − φk gt

i

rt
i = φ k−1ε t +1 + ... + ε t +k +

et +k
i

rt +k
i − φk et

i

rt
i  

 
Again, if D i(k)  represents the time average of the elements dt

i(k)[ ]2
, its mean value is 

given by 
 
Di(k) = E D i(k)[ ]=Ψ (k)τ 2 +σ i

2 H i(k) , 

 
where Ψ(k) and Hi(k) are defined as previously. For fixed k ≥ 1 there are M equations of 
the form 
 
D i(k) = Di(k) , 
 
so one more is needed to estimate the M+1 parameters. Another equation of this type, 
for different  and any location i0 may be added, but as the choice of the location is 

somewhat arbitrary a more efficient solution is to average all the equations for  over all 
the sites to get 
 

  
D ( ) = Ψ ( )τ 2 +

1

M
σ i

2H i( )
i=1

M

∑ . 

 
This originates the estimators 
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ˆ τ 2 =
D ( ) −

1

M
Di(k)H i( ) H i(k)

i =1

M

∑

Ψ ( ) −Ψ (k)
1

M
1 H i(k)

i =1

M

∑
 

 
and 
 

ˆ σ i
2 =

D i(k) −Ψ (k) ˆ τ 2

H i(k)
           for i = 1,...,k. 

 
Finally, values have to be assigned to the constants μ and φ. As E(gt/rt) = μ, this 
parameter may be estimated by simply averaging over time the ratios gt/rt. Note that 
when μ ≠ 0, the differences dt (k)  are given by 
 

dt (k) =
gt + k

rt +k

− μ
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ −φ k gt

rt

− μ
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ . 

 
The estimation of φ is more problematic. A possible suggestion is to estimate φ – and 
even μ – through the minimization of the sum of squares of dt(1). However, this has to 
be done with caution once the least squares method will be applied to observations with 
different unknown variances. In fact, this is a problem deserving further investigation. 
Of course, there remains the possibility of trying several values and choose the one 
producing the best practical result in the sense it is explained in section 2.4. 
 
- 
- 
- 
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