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Summary 
 
Time series data measure phenomena when there are dependencies over time between 
prior and current values of the observations.  This chapter provides a brief introduction 
to the standard (linear autoregressive moving-average) time series models including 
how such models are identified and fitted to the data.  A review of more generalized 
models follows.  This includes bilinear models which are useful to model processes 
which might contain sudden and short spurts, i.e., higher/lower values than those of the 
basic series as might occur in an earthquake, cyclone, etc.  Where dependence also 
exists in space as well as time, spatial models, be these standard linear or bilinear 
models, are required; these are described briefly also.  All these models have an 
underlying assumption that the errors and hence the observations are normally 
distributed.  A brief review of models where the marginal distribution of the 
observations follows an exponential distribution is included. 
 
1. Introduction 
 
Time series data measure many phenomena in the life sciences, such as diseases 
(including epidemic trends), environmental data (such as pollution counts), 
meteorological data (cloud cover, temperatures, wind speeds, rainfall, barometric 
pressures, etc.), oceanographic data (ocean currents and temperatures, etc) as well as 
fisheries data (e.g., catching trends), agriculture (such as farm/crop outputs, land usage, 
water quality, and crop diseases), economic trends (time, productivity levels, prices, 
etc.), and geological and geographical data (such as earthquakes); the list is endless.  All 
produce data that are best modeled by time series.   
 
A key feature of time series data is that the current observations are dependent on values 
of previous observations; that is, the order in which the observations appear is 
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important.  For example, consider a disease outbreak where the data consist of the 
number of occurrences (number of infectives, or other measures of infectivity) for each 
unit of time (day, week, month, etc.).  Then, it is quite reasonable to assume that the 
number of occurrences at the present time t depends (in some way to be determined) on 
the number of occurrences at the previous time (t - 1).  This may be represented as 
 

( ) ( 1) ( )y t y t e tφ= − + , (1) 
 
where y(t) is the number of occurrences at time t, φ is a parameter [in effect representing 
a measure of the degree of dependence on the previous observation y(t − 1)] and e(t) is 
the error term associated with the observation y(t).  Indeed, the dependence may go back 
as far as the p previous times {t − 1, …, t − p}.  In ways that shall be seen shortly, this 
dependence can also (and/or alternatively) be expressed through the (q) preceding error 
terms.  Notice that, when p = 0 and q = 0, the data are independent.  This basic so-called 
standard linear time series model is discussed in Section 2. 
 
There are some extensions to, and variations of, this standard model. Let us consider 
data recording average monthly temperatures at a given location.  It is easy to see that 
the temperature this month (June, say) is related to the temperature for the previous 
month (May) as in Eq. (1).  It is also likely that the temperature is related to the previous 
June figure.  That is, there is seasonal dependence as well as current dependence.  Such 
data give rise to seasonal time series models; these are also discussed briefly in Section 
2. 
 
The standard linear model (including the seasonal model) fits data that are stationary in 
the sense that the underlying patterns in the data are reasonably consistent.  However, 
these models are typically unable to detect changes in historical patterns for processes 
which may exhibit sudden outbursts of activity such as when there is an epidemic 
outbreak in a disease pattern, or an earthquake, or the like.  In these cases, bilinear 
models are better suited to model such data.  This is particularly important when the 
data/models are being utilized as a surveillance mechanism for monitoring and control 
purposes to detect any such sudden changes.  These will be described in Section 3. 
 
In a different direction, consider data representing incidence of disease (e.g., mumps 
incidence at different locations, or fungi on wheat, etc.).  Many (if not all) diseases 
occur in locations that are part of a broader region, rather than occurring in isolation at 
any particular site.  That is, in addition to time dependence, the numbers of occurrences 
of a disease at a specific site are typically spatially dependent on the numbers at 
adjacent sites.  Clearly, the standard models (linear, bilinear, and/or seasonal) which 
model dependence over time but all at one location cannot deal with this. Therefore, it is 
necessary to consider spatial time series models; see Section 4.  It is easy to see that 
many environmental, oceanographic, etc., processes have both the time and spatial 
dependences as inherent components.  Many will be spatial but linear time series 
models.  When both spatial and sudden bursts of changes (as in disease outbreaks) 
occur, then spatial bilinear models should be considered; see Section 5. 
 
An underlying assumption of all the above models is that the marginal distribution of 
the observations follows a normal distribution. There are however many applications in 
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which these distributions are non-normal.  Processes which give non-negative values, 
and/or have heavy tails, (such as water levels, or flood level measures, etc.), may be, 
and often are, nonnormal.  Wind velocity amplitudes or acoustical data are typically 
uniformly or exponentially or more generally Laplace distributed and so are nonnormal.  
This leads to an exponential (broadly defined) class of time series models discussed in 
Section 6. 
 
2. Standard Linear ARMA Models 
 
The standard linear autoregressive moving average model, developed in the 1920s, is 
given by 
 

1 1

( ) ( ) ( ) ( )
p q

i j
i j

y t y t i e t j e tφ θ
= =

= − + − +∑ ∑ , (2) 

 
where {y(t)}, t = 1, 2, …, is a sequence of observations and {e(t)}, t = 1, 2, …, is a 
white noise process with E{e(t)} = 0 and Var{e(t)} = σ2, and where φi, i = 1, …, p, are 
the autoregressive parameters and θj , j = 1, …, q, are the moving average parameters.  
Let us assume further that these {e(t)} are normally distributed.  The model is denoted 
by ARMA (p,q) with p and q representing the autoregressive order and moving average 
order of the model, respectively. 
 
There are many properties of the models which need to be satisfied in some aspect.  
Typically, the most important are stationarity and invertibility.  For example, take the 
ARMA (1,0) model, or simply the pure autoregressive model of order one, AR(1) 
model, given by Eq. (1).  When |φ| < 1, the model is stationary.  Otherwise, it is 
nonstationary.  When |φ| > 1, we see from (1) that the underlying process is explosive.  
When |φ| = 1, we have 
 

( ) ( 1) ( ),y t y t e t= − +  
or 
 

( ) ( ) ( 1) ( );w t y t y t e t≡ − − =  
 
that is, 
 

( ) (1 ) ( ), ( ) ( 1),w t B y t By t y t= − = −  
 
where B is the backward shift operator. 
 
That is, by differencing, the nonstationary {y(t)} process is transformed into a stationary 
{w(t)} process.  In general, we difference d times to produce stationarity.  The general 
model is denoted as ARIMA (p,d,q).  A pure autoregressive model will always be 
invertible.  In contrast, an ARMA(0,q) pure moving average process is always 
stationary but requires conditions on its parameters to achieve invertibility; so, e.g., the 
ARMA (0,1) or equivalently the MA(1) model, 
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( ) ( 1) ( )y t e t e tθ= − +  (3) 
 
is invertible only if |θ| < 1. 
 
Determination of the (p,d,q) which identifies the model is done through the 
autocorrelation functions defined, at lag k, by  
 

Cov{ ( ), ( )}
Var{ ( )}Var{ ( )}k

y t y t k
y t y t k

ρ +
=

+
, (4) 

 
where 
 
Cov{ ( ), ( )} E{ ( ) }{ ( ) }y t y t k y t y y t k y+ = − + −  
 
is the autovariance function at lag k and y  is the usual average of the observed 
observations.  For each ARMA (p,q) model, we know the theoretical patterns for ρk, k = 
1, 2, … . 
 
For example, for an AR(1) model, 
 

, 1, 2, ,k
k kρ φ= = …  (5) 

 
that is, the autocorrelation function ρk decays exponentially; while for an MA(q) model, 
 

0, ,
0, ,

k k q
k q

ρ ≠ ≤
= >

 (6) 

 
that is, the autocorrelation function ρk cuts off at k = q. 
 
The partial autocorrelation functions, φpp, have the reverse pattern.  By this we mean 
that while for pure AR(p) models, ρk decays exponentially in some manner, the partial 
autocorrelation function cuts off at p.  Likewise, for a pure MA(q) model, the 
autocorrelation function cuts off at q, but the partial autocorrelation function decays.  
For the mixed ARMA (p,q) model, both the autocorrelation functions and the partial 
autocorrelation functions decay (and do not cut off). 
 
These theoretical autocorrelation and partial autocorrelation functions are therefore 
compared with the sample autocorrelations ˆkρ , k = 1, 2, …, and the sample partial 
autocorrelation functions, calculated from the data, to identify tentative values for p, q 
and d.  If these plots of ˆkρ as k increases do not decay towards zero, then the data need 
further differencing to produce stationarity. 
 
Standard seasonal models are so-called multiplicative model extensions of the 
nonseasonal models of (2).  Let us consider the pure autoregressive AR(1) model.  Eq. 
(1) can be written as (1 ) ( ) ( ).B y t e tφ− =  
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If there is also seasonal dependence of order s of the autoregressive component, then the 
model becomes 
 
(1 )(1 ) ( ) ( )sB B y t e tφ− − Φ = , (7) 
 
where Φ is the seasonal autoregressive parameter.  Typically s = 12 (monthly data), s = 
52 (weekly), s = 4 (quarterly), etc.  This equation  becomes 
 

( ) ( 1) ( ) ( 1) ( ),y t y t y t s y t s e tφ φ= − +Φ − − Φ − − +  
 
and represents the ARMA(1,0) × (1,0)s model.  The general ARMA (p, d, q) × (P, D, 
Q)s model is 
 

1 1(1 )(1 )(1 ) (1 ) ( )p s sP d s D
p pB B B B B B y tφ φ− − − −Φ − −Φ − −… …

 
1 1(1 )(1 ) ( ).q s sQ

q QB B B B e tθ θ= − − − −Θ − −Θ… …  (8) 
 

Properties for the seasonal components of this model are analogous to those for the 
nonseasonal model.  In particular, the seasonal model orders (P,D,Q) are identified from 
the patterns in the autocorrelation and partial autocorrelation functions but at s-unit 
apart lags.  When P = 0, D = 0 and Q = 0, the model reduces to the standard 
(nonseasonal) linear ARMA model of (2). 
 
Once the model orders have been identified, the model parameters { , 1, , }i i pφ = … , 
{ , 1, , },j j qθ = …  { , 1, , },i i PΦ = …  { , 1, , }j j QΘ = …  and σ2 are estimated using the usual 
techniques.  Since the {y(t)} and {e(t)} are all normally distributed, maximum 
likelihood estimators can easily be calculated, as well as the properties of these 
estimators (such as their asymptotic normality and the like). If further the model is to be 
used to predict observations at other (often future) values, then these predictors and their 
associated properties can also be calculated easily.  Many of the well-known statistical 
packages now perform these tasks routinely. 
 
- 
- 
- 
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