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Summary 
 
Estimating the size of a population of a species is of interest and importance to the study 
and/or monitoring of biological and other populations. The size of a population is also 
called the abundance and estimating the abundance is mathematically equivalent to 
estimating the number of plants or animals per unit area which is referred to as the 
density or the intensity of the population. This chapter reviews the rich variety of 
approaches to this difficult problem, including quadrat sampling, adaptive cluster 
sampling, line transect or distance sampling, nearest neighbor distance methods and 
capture-recapture methods. 
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1. Introduction 
 
The estimation of species abundance or population size is often a fundamental aspect of 
the study and/or monitoring of biological and other populations. The different 
approaches to this problem can be distinguished by the different types of data which can 
be collected (including counts, distances etc), the different ways in which the data can 
be collected (quadrat sampling, adaptive sampling etc) and the different ways in which 
we can estimate abundance from these data. 
 
Suppose we are interested in estimating the unknown number N of members of the 
species (which we refer to as objects) in a region R of area A. We treat R as 
homogeneous for simplicity. (If R has a known inhomogeneous structure, we can 
stratify R and treat each stratum separately; in this case, R is synonymous with a stratum 
of R.)  A useful abstract version of the problem is obtained by treating the objects as 
points distributed in R according to some point process. The problem is to estimate N or, 
equivalently, N/A which is referred to as the object density or intensity. We will use 
intensity to avoid confusion with probability density functions and express all 
estimators as estimators of the abundance N rather than the intensity N/A. 
 
Treating a biological population as a realization of a spatial point process is most useful 
for populations of stationary objects whose size is negligible compared to the area A of 
the region. Highly mobile species pose particular problems, rare and difficult to detect 
species introduce further complications. It is not surprising that there is a substantial 
literature on estimating species abundance for particular species. This usually begins by 
applying and adapting general methods to the specific species but may ultimately lead 
to the development of specialized techniques. It is impossible to review this literature in 
any generally useful way so we will restrict our focus to general methods applied in the 
idealized, abstract context. 
 
As in all sampling, there are two different approaches to introducing randomness and 
these lead to different ways of thinking about estimation and inference. In the design-
based framework, we condition on the number and location of the objects (so they are 
treated as fixed) and the randomness is induced by the sampling scheme used to collect 
the data. On the other hand, in the model-based framework, we condition on the sample 
and randomness is induced from the underlying stochastic process which determines the 
number and locations of the objects. The model-based approach does not preclude 
random sampling (which can be useful in providing information about the 
appropriateness of the model) but does not require it because it conditions on the 
observed sample. One difficulty in the literature on estimating species abundance is that 
the framework is not always explicitly specified and some methods incorporate aspects 
of both approaches. 
 
The choice of inferential framework affects the way standard errors are obtained and the 
way we interpret the resulting inferences. The design-based approach is nonparametric 
in the sense that it depends only on probabilities which are under our control and 
known. (Standard error estimation requires joint inclusion probabilities which are not 
always straightforward to compute.)  Since the method is intended to apply to any 
population, it does not necessarily do particularly well in any specific population and 
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this is reflected in inefficient estimates. There are also a number of well-known 
difficulties stemming from the unconditional nature of the approach. Model-based 
methods condition on the observed sample and, provided the model holds, should 
perform better than design-based methods. The difficulty is that there is usually some 
uncertainty about the appropriateness of the model (i.e. the assumptions) so we have to 
deal with robustness issues and these can be quite complicated in sampling problems. 
 
The class of models for the underlying spatial point process is limited by the 
complication of working with many of the models. The simplest and most tractable 
model is the homogeneous Poisson process. A homogeneous Poisson process with 
intensity λ  (representing the mean number of objects per unit area) has N ~ 
Poisson ( )Aλ  and, conditional on N, the points distributed uniformly in R. For this 
reason, the homogeneous Poisson process is sometimes described as complete spatial 
randomness (CSR). This model is often too simple to account for observed 
heterogeneity such as clustering in the data. More useful models include the 
inhomogeneous Poisson process in which the intensity varies spatially over the region. 
Alternatively we can think of two-stage or parent-daughter processes with each stage 
following a separate stochastic model. In practice, we cannot distinguish between a two-
stage (parent-daughter) Poisson process and heterogeneous Poisson process so we use 
whichever model is the more convenient. 
 
A number of other point processes have been put forward as methods for describing or 
simulating ecological data. Inhibition models attempt to describe the competitive and 
territorial behavior which is observed in ecological populations. Matern's static process 
is a modification of a homogeneous Poisson process in which all pairs of points which 
are less than r units apart are eliminated. This type of model is supposed to account for 
the competitive behavior which is observed in many species of plants and animals. 
Matern's sequential process is a dynamic variation, where a homogeneous Poisson 
process is generated one point at a time and a point is discarded if it lies within r units 
of any previously generated point. This process is more suited to animals, particularly 
those which exhibit territorial behavior. Diggle's sequential process is a modification of 
Matern's sequential process in which a point is discarded only if it is within r units of a 
retained point. All of the above processes are inflexible in the sense that the distance r is 
fixed and assumed to be the same for all pairs of points. The Strauss process allows n 
neighboring points within a distance r. The model has joint density proportional 
to N nα β , where α and β are parameters and N is the number of points in the process. 
This process has been used to model the distribution of pine trees in a forest and the 
distribution of magnetic crystals in a rock. 
 
Specifying the underlying stochastic process is only the first step. If we collect counts or 
distances, we need to derive their distributions from the underlying stochastic process. 
This is simplest for the homogeneous Poisson process and more complicated for other 
processes. The derived distributions do not necessarily distinguish between underlying 
processes, showing how difficult it can be to learn about the underlying process. The 
negative binomial distribution, for example, can arise in at least five different ways:- 
 
• inverse binomial sampling - number of trials to kth success 
• heterogeneous Poisson process - compound Poisson and gamma 
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• two-stage Poisson process - generalized Poisson and logarithmic 
• constant birth-death-immigration process 
• true contagion - mutual attraction of objects. 
 
Hence establishing that a negative binomial distribution is appropriate does not reveal 
anything definite concerning the genesis of the population and therefore attempts to 
classify spatial patterns, including the use of statistical tests of fit to rule out competing 
models, are of doubtful benefit in determining the genesis of the pattern. 
 
In highlighting various difficulties, it is not our intention to be negative. The problem of 
estimating species abundance is important and difficult; the difficulties pose challenges. 
It is remarkable what can and has been achieved and we are optimistic about what may 
be achieved in future. 
 
The rest of this chapter consists of brief reviews of the main methods of estimating 
species abundance. We first discuss quadrat (Section 2) sampling which is based on 
counting the number of objects in selected areas called quadrats. We then consider 
adaptive sampling (Section 3) which is an extension of quadrat sampling to increase 
efficiency when trying to estimate the abundance of rare, clustered populations and line 
and point transect sampling (Section 4) which is an extension of quadrat sampling to 
allow for the fact that not all the objects in a quadrat are observed. We then discuss 
nearest neighbor distance sampling (Section 5) which is based on measuring distances 
without specifying quadrats. Finally, in Section 6, we discuss capture-recapture 
sampling which also avoids the need to specify quadrats explicitly. 
 
2. Quadrat Sampling 
 
As the name suggests, quadrats were originally square subsets of the study region which 
were sampled by throwing a wooden frame over the shoulder backwards. To avoid bias, 
both the location of the throwing point and the direction of throw need to be randomized 
and one has to allow for the possibility of overlap. A quadrat now more generally refers 
to a study area of fixed size and shape with square, rectangular and circular quadrats in 
most common use, and may be used as a synonym for sampling units (paddocks, trees, 
leaves, rocks, logs, rock pools, fishing nets etc). Quadrats may be permanently marked, 
for example by using wire or pegs; alternatively, in sparse populations the actual 
physical quadrat may not be needed at all - one only needs to locate quadrats accurately. 
Obviously, decision rules are needed to include or exclude objects on the boundary.  
 
Suppose that the study region R is exhaustively partitioned into M non-overlapping 
quadrats of area ia , each of which contains an unknown number of objects 

,iY 1, ,i M= … .  We collect data by selecting a sample s of m quadrats and counting the 
number of objects in each of the selected quadrats. We usually sample without 
replacement (so that no quadrats are chosen more than once).  Different sized quadrats 
may be convenient when there is information on the distribution of the objects so that, 
for example, larger quadrats could be used in areas where the objects are sparse to save 
time in enumeration. 
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2.1. Design-Based Quadrat Sampling 
 
All the classical finite population sampling designs (including simple random sampling, 
stratified, cluster, probability proportional to size (pps), random systematic designs etc) 
and their associated estimators can be used to construct design-based estimators of 
abundance. If we select quadrats by simple random sampling without replacement, we 
have the expansion estimator 
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ˆ .i

i s
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m

∈
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If, as is often the case, the counts in the ith quadrat are proportional to the area of the 
quadrat, we can use the ratio estimator 
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On the other hand, if we use probability proportional to size sampling, the selection 
probability for the ith quadrat is ai/A, and the Horvitz-Thompson estimator of the total 
will be 
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These are all classical estimates and expressions for estimating their variances are well 
known. For example, the variance of the expansion estimator under simple random 
sampling without replacement is estimated by the familiar 
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2.2. Model-based Quadrat Sampling 
 
Most models for quadrat sampling treat the quadrat counts 1, , MY Y…  as independent 
random variables with some count distribution. For example, the Poisson model 
assumes that the quadrat counts are independent Poisson variables with mean ia λ , 

whereλ is the mean intensity. We can estimateλ by 1ˆ
ii s
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∈
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abundance by 
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which is the same as the ratio estimator. 
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Under the binomial model the quadrat counts are independent binomial (rai ,p) variables 
(treat rai  as an integer for simplicity). The need to estimate r (the largest possible count 
in a quadrat) as well as p (the probability that an object is present in a quadrat) makes 
this an unusual model. The parameter r is usually estimated by the largest observed 
count r̂  and p is estimated by 1ˆ ˆ( ) ii s

p ar Y−

∈
= ∑ . The estimate of population size is 

given by ˆˆArp  which is the ratio estimator. Similarly, the negative binomial model has 
parameters p, where ( )1p p + is the probability of an object being present in a quadrat, 
and ia k , which is related to the degree of clustering. The estimate of abundance is again 
the ratio estimator. The variance of the estimator depends on the model. The general 
form of the estimated prediction variance is 

2

P
ˆˆ ˆ( ) 1 [ ]i

A aV N V Y
a A
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where ˆ ˆ[ ]iV Y λ=  under the Poisson model, ˆ ˆˆ ˆ[ ] (1 )iV Y rp p= −  under the binomial model 

and ˆˆ ˆ ˆ[ ] (1 )iV Y kp p= +  under the negative binomial model. 
 
The Poisson distribution has been used to model the distribution of spiders under 
boards. However, most animals are clustered rather than randomly distributed. Although 
much discussed, the binomial model has only rarely been used in practice. The negative 
binomial model has been widely used, particularly in modeling insect counts. In an 
interesting study, Shiyomi and Nakamura distributed aphids on barley plants both 
randomly and uniformly.  Within a few days the number of aphids per plant was 
Poisson distributed, presumably due to random deaths and plant to plant movement, but 
after a short period of reproduction (1 week), the number of aphids per plant had a 
negative binomial distribution. 
 
Other models for count data are also sometimes used. Compound and generalized 
models provide enormous scope for describing actual populations. However several 
authors have pointed out that no precise biological meaning can be attached to the 
parameters of the various distributions. In addition it has been noted that several 
distributions can often fit the same data equally well. For example micro-arthropods and 
rice leaf grasshoppers have been modeled using the Neyman type A, Polya-Aeppli, 
negative binomial and discrete log-normal models.  
 
The above models can be extended to incorporate covariate information such as the size 
of the quadrat, physical aspects (e.g. soil type), type of vegetation, time of day or year, 
distance from water and so on, provided these covariates or benchmark variables are 
available for the whole population of quadrats. The parameters of the model are 
estimated from the quadrat sample, predicted values are then obtained for quadrats 
which were not sampled and the prediction variance of the final estimate is derived from 
the model. This approach has been used with two-part Poisson and negative binomial 
models to estimate the abundance of seabird nests. 
 
A simpler but less efficient approach is based on using the number of quadrats with zero 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

BIOMETRICS - Vol. I -Estimating Species Abundance - G.J. Melville, A.H. Welsh 

©Encyclopedia of Life Support Systems (EOLSS)  

counts 0 ( 0)ii s
n I Y

∈
= =∑  (the unstocked quadrats) to construct an estimator. For 

example, if all quadrats have equal area a, under the Poisson model 
( 0) exp( )iP Y aλ= = −  so 1 log ( 0)ia P Yλ −= − =  and we can estimate N as 
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a
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with estimated variance 
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2.3. Quadrat Size 
 
Quadrat sampling is sensitive to quadrat size and this choice is somewhat arbitrary. 
Particularly if the intention is to use a model-based analysis, the quadrat size can 
determine the appropriateness of the model. There are several rules of thumb in the 
literature for choosing quadrat size. One possibility is to choose the quadrat size which 
has a mean count of 1.6 - for the Poisson model this results in 20% zero quadrats. 
Alternative suggestions include obtaining a mean count of 1.0 (40% zero quadrats) and 
4.0 (2% zero quadrats).  
 
3. Adaptive Cluster Sampling 
 
Adaptive cluster sampling is an extension of quadrat sampling which is intended to 
improve efficiency when the objects of interest are clustered and possibly rare. The 
basic idea is to take an initial probability sample (such as a simple random sample 
without replacement) of quadrats and then sample additional quadrats around those 
quadrats in which at least one object is detected. This second adaptive stage of sampling 
continues until the adjacent quadrats contain no objects. 
 
Although adaptive sampling schemes have been of interest for some time, adaptive 
cluster sampling as described here derives from the work of Thompson and Seber. 
 
As in ordinary quadrat sampling, we enumerate the quadrats by 1, ,i M= … and 
let iY denote the number of objects in the ith quadrat. The quadrats (which are usually 
taken to be square and of equal size) are the sampling units. 
 
Suppose that we select an initial sample 1s of 1m quadrats using a probability design such 
as simple random sampling without replacement. Suppose that the ith quadrat is in the 
initial sample so i∈s1. If the ith quadrat does not contain any objects ( 0)iY = , no further 
sampling is carried out around it. If the ith quadrat contains at least one of the objects of 
interest ( 0)iY > , we add the neighborhood iNbhd  of the ith unit to the sample and count 

jY , ij Nbhd∈ , the number of objects in these additional quadrats. The neighborhood 

iNbhd  of the ith quadrat is defined to be the ith quadrat and the set of four quadrats 
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with an edge in common with this quadrat. If any of the additional quadrats in iNbhd  
contain the object of interest, we add the neighborhoods of these quadrats to the sample 
and count the number of objects in them. We proceed in this way until we obtain 
neighborhoods in which none of the quadrats contain any objects and then stop. Thus 
we obtain a set of quadrats with at least one common boundary which contain the 
objects of interest surrounded by a set of empty quadrats (called edge quadrats) which 
have at least one common boundary with the object containing quadrats. This set of 
quadrats that are observed as a result of including the ith quadrat in the initial sample 
(including the edge quadrats) is called the ith cluster. Thus the final sample s consists of 
isolated quadrats containing no objects (clusters of size one) and clusters of quadrats in 
which the inner quadrats contain objects and which include an outer ring of empty edge 
quadrats. 
 
Clusters of quadrats arise naturally from the sampling process but are not convenient to 
work with. The difficulties are caused by the edge units because selecting edge quadrats 
does not result in the cluster being selected and clusters can overlap in the sense of 
having edge quadrats in common. One way to get around these difficulties is to omit the 
edge units from the clusters of size greater than one. The resulting object is called a 
network. The network iNet of the ith quadrat is the cluster generated by the ith quadrat 
with the (empty) edge units removed. Empty units are defined to be networks of size 
one so that both clusters of size one and edge units are networks of size one. Networks 
cannot overlap and form an exhaustive partition of the region of interest, making them 
simpler to use than clusters. 
 
In the design-based analysis, the quadrats are the basic sampling units but the inclusion 
probabilities (the probability of including a quadrat in the sample) are unknown. 
Thompson defined the partial inclusion probability iπ ′ to be the probability that the initial 
sample intersects iNet and then constructed Horvitz-Thompson estimators based on the 
networks 
 

AS
ˆ .i

ii s

YN
π

∈

=
′∑  (9) 

 
After re-expressing the estimator in terms of networks, the variance can be estimated in 
a standard way. 
 
The estimator ASN̂  is designed unbiased so can be improved by applying the Rao-
Blackwell theorem. However, whether this rather complicated step is worth doing in 
practice is unclear. 
 
Adaptive cluster sampling can be extended to stratified populations of quadrats. This is 
straightforward unless networks are allowed to straddle stratum boundaries. 
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