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Summary 
 
The basic linear regression model is introduced, followed by estimation and inferential 
methods. Diagnostic and remedial measures are discussed. Then, the method and its 
inferential procedures is generalized to the multiple linear regression setting, i.e., the 
context where the response variable is explained in terms of several rather than one 
explanatory variable. 
 
1. Introduction 
 
Understanding relationships among sets of variables is a basic problem in statistical 
science. In the late nineteenth century, Sir Francis Galton made a fundamental 
contribution to understanding multivariate relationships by introducing regression 
analysis. In one dataset, described in his 1885 presidential address before the 
Anthropological Section of the British Association of the Advancement of Sciences, 
Galton linked the distribution of children's heights to their parents'. Galton showed not 
only that each distribution was approximately normal but also that the joint distribution 
could be described as a bivariate normal. Thus, the conditional distribution of adult 
children's height, could also be described by using a normal distribution. As a by-
product of his analysis, Galton observed that “tall parents tend to have tall children 
although not as tall as the parents” (and vice versa for short children). From this, he 
incorrectly inferred that children would “regress to mediocrity” in subsequent 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

BIOMETRICS - Vol. I - Linear Regression Models - F. Tibaldi 

©Encyclopedia of Life Support Systems (EOLSS)  

generations, hence suggesting the term that has become known as regression analysis. 
Several authors have given insightful and entertaining accounts of the terminology use 
of Galton as well as of other contributors to statistical science. 
 
Regression analysis has developed into the most widely applied statistical methodology. 
It is an important component of multivariate analysis because it allows researchers to 
focus on the effects of explanatory variables. To illustrate, in the Galton dataset of 
family heights, regression allows the analyst to describe the effect of parents' height on 
a child's adult height. 
 
2. Simple Linear Regression model 
 
Regression in its simplest form, is a technique for modeling a relationship between two 
variables. This, of course, can be extended to multiple variables. 
 
2.1. The Model 
 
The simple linear regression model can be stated as follows 
 

0 1 ,i i iY xβ β ε= + +  1, ,i n= …  (1)  
where  
 
• iY  is the response (dependent variable) for the ith trial (subject, sample,…); 
• ix  is the value of the independent variable (predictor, regressor,…) in the ith trial; 
• the error term iε  represents the residuals, assumed to be independent random 
variables  having a normal distribution with mean zero and constant variance 

2σ .  In other words, 
o E( ) 0,iε =  
o 2Var( )iε σ=  (homoscedastic errors), 
o Cov( , ) 0i jε ε =  with i j≠  (uncorrelated errors), 

• the unknown parameters 0β  and 1β , also called the regression coefficients, need to 

be  estimated. In Section 2.2 we will outline a method to obtain estimates 0β̂ and 

1̂β  for 0β   and 1β . 
 
The simple linear regression model (1) is called a statistical model and needs to be 
distinguished from a so-called deterministic model. The “law of gravity” in physics, for 
example, is a deterministic model that assumes an ideal setting where the response 
variable varies in a completely prescribed way according to a perfect mathematical 
function of the independent variables. Statistical models allow for the possibility of 
error (variability) in describing a relationship.  We also need to distinguish between 
observational data and experimental data. The first type of data is obtained without 
controlling the independent variable. A major limitation of this kind of data is that they 
often do not provide adequate information about causal relationships. One always 
should investigate whether other independent variables might explain causal 
relationships more directly. When control is exercised over the independent variable, 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

BIOMETRICS - Vol. I - Linear Regression Models - F. Tibaldi 

©Encyclopedia of Life Support Systems (EOLSS)  

the resulting experimental data provide much stronger information about causal 
relationships. In a completely randomized design, treatments are assigned to each of the 
experimental units completely at random. Randomization tends to balance out the 
effects of any other variable that might affect the response. 
 
2.2. Estimation 
 
The regression coefficients, 0β and 1β , are traditionally estimated using least squares. 

Such estimators, usually denoted by 0β̂  and 1̂β , are defined as the minimizer of 
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Differentiating 0 1( , )Q β β  with respect to 0β  and 1β  and setting these partial derivatives 
equal to zero leads to the normal equations that, once solved, yield: 
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We can use the estimators 0β̂  and 1̂β  to estimate the regression function 

0 1E( )Y xβ β= +  by 0 1
ˆ ˆˆ

iY xβ β= + .  We call 0 1
ˆ ˆ

î iY xβ β= +  the ith fitted value and 
ˆ

i i ie Y Y= −  the ith residual. Residuals play a very important role in studying whether a 
given regression model is appropriate for the data at hand. 
 
Next, we propose an estimator for the variance parameter 2σ . Recall that, based on a 
sample of independent normally distributed random variables 1, , nZ Z… , 

2 2

1

( ) /( 1)
n

i
i

S Z Z n
=

= − −∑  is an unbiased estimator for 2σ . Now, in the regression model 

(1), each iY  has its own mean 0 1 ixβ β+ , which can be estimated by the fitted value îY . 
Hence, the deviation from the mean is now represented by the residual ie  and the 

appropriate sum of squares 2

1

n

i
i

SSE e
=

= ∑  with 2n −  degrees of freedom is used to obtain 

an unbiased estimator of 2σ  by /( 2)MSE SSE n= − . 
 
 2.3. Inference 
 
To set up interval estimates and test procedures, we need to specify the error 
distribution. In the normal error regression model we extend (1) with the assumption 
that iε  are independent zero-mean normally distributed with variance 2σ . Therefore, 
the normal regression model can be formulated as iY  are independent 2

0( , )i iN xβ β σ+ . 
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In the next section we will explain how inferences can be made under the assumption of 
the linear regression model. To do so, we will use the following results.  
• If SSE  is the sum of squares defined in Section 2.2, then 2 2

( 2)/ ~ nSSE σ χ − . 

• SSE  and 0 1
ˆ ˆ( , )β β are independent. 

• 2
0 0 0

ˆ ˆ~ ( , ( ))Nβ β σ β  where 
2

2 2
0 2

1

1ˆ( )
( )n

ii

x
n x x

σ β σ
=

⎛ ⎞
⎜ ⎟= +
⎜ ⎟−⎝ ⎠∑

. 

• ( ))(,~ˆ
1

2
11 βσββ N  where 

2
2

1 2
1

ˆ( )
( )n

ii
x x
σσ β

=

=
−∑

. 

 
The variances 2

0
ˆ( )σ β  and 2

1̂( )σ β  contain the unknown parameter 2σ  and therefore 
have to be estimated. Using the fact that 2ˆ MSEσ =  we have 
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Then, 
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2.3.1. Inferences about the Regression Coefficients 
 
Mainly hypothesis tests regarding 1β  are of importance, with particular emphasis on 
 

0 1: 0H β =      versus 1 1: 0H β ≠ . 
 
Indeed, 1 0β =  indicates that there is no linear association between the response Y  and 
the independent variable X .  If 1 0β =  the linear model simplifies to iY  being 
independent 2

0( , )N β σ , which implies not only that there is no linear association 
between response and independent variable but also that there is not relation of any type 
between them. In contrast there are only infrequent occasions when we wish to make 
inferences concerning 0β . 
 
Using the distributional results we can then construct ( ) %1001 ×−α confidence intervals 
for 0β  and 1β  in the following way: 
 

0 0
ˆ ˆˆ(1 / 2; 2) ( )t nβ α σ β± − −  

 
and 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

BIOMETRICS - Vol. I - Linear Regression Models - F. Tibaldi 

©Encyclopedia of Life Support Systems (EOLSS)  

1 1
ˆ ˆˆ(1 / 2; 2) ( ).t nβ α σ β± − −  

 
 
Test concerning the parameters of this model can be set up in a standard fashion using 
the t  distribution. The decision rule for the two-sided alternative 0: 10 =βH  is 

1
0 1

1

ˆ
if (1 / 2; 2) do not reject : 0,ˆˆ ( )

t n Hβ α β
σ β

≤ − − =  

 

1
0 1

1

ˆ
if (1 / 2; 2) reject : 0,ˆˆ ( )

t n Hβ α β
σ β

> − − =  

 
This rule can also be used for the one-sided alternative. 
 
If the response distribution is not exactly normal but does not seriously depart from 
normal, the distributions of 0β̂  and 1̂β  will still be approximately normal. If the 

response distribution is far from normal, one can use the asymptotic normality of 0β̂  

and 1̂β : their distributions approach normality as the sample size increases. Thus, with 
sufficiently large samples, the confidence intervals and decision rules given earlier still 
apply with t -percentiles replaced by normal percentiles.  
 
- 
- 
- 
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