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Summary 
 
Starting from linear regression and the exponential family, generalized linear modeling 
is introduced. Standard estimation procedures, based on the likelihood, are introduced, 
as well as alternatives such as quasi-likelihood. The extension to generalized estimating 
equations is discussed briefly.  
 
1. Introduction 
 
For several decades normal linear models of the form  
 
Y X β ε= +  (1) 
 
where ε  is assumed to be normally distributed with mean zero and variance 2σ  have 
formed the basis of most analyses on continuous data. Recent advances in statistical 
theory and computer software allow us to use methods analogous to those developed for 
linear models in the following situations. 
 
1.The response variables have distributions other than the normal distribution; they may 

even be categorical rather than continuous. 
2.The relationship between the response and explanatory variables need not be of the 

simple linear form in (1). 
 
One of these advances has been the recognition that many of the nice properties of the 
normal distribution are shared by a wider class of distributions called the exponential 
family of distributions.  We will come back to this family later in Section 2.  A second 
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advance is the extension of the numerical methods for estimating parameters, from 
linear combinations such as X β  to functions of linear combinations ( )g X β . 
In this chapter we focus on “Generalized Linear Models” (GLM) which refer to a family 
of regression models described by Nelder and Wedderburn, which provide a unified 
approach to many of the most common statistical approaches.  To summarize the basic 
ideas, the generalized linear model differs from the general linear model (of which, for 
example, multiple regression is a special case) in two major respects: First, the 
distribution of the dependent or response variable can be (explicitly) non-normal, and 
does not have to be continuous, i.e., it can be binomial, multinomial, or ordinal 
multinomial (i.e., contain information on ranks only); second, the dependent variable 
values are predicted from a linear combination of predictor variables, which are 
“connected” to the dependent variable via a link function. The general linear model for 
a single dependent variable can be considered a special case of the generalized linear 
model: In the general linear model the dependent variable values are expected to follow 
the normal distribution, and the link function is a simple identity function (i.e., the linear 
combination of values for the predictor variables is not transformed).  
 
2. A Corner Stone: the Exponential Family of Distributions 
 
The exponential family of distributions forms a corner stone in the development of 
generalized linear models.  The probability function for the canonical form of the 
exponential family for the ith observation is: 
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where the parameter of interest for the ith observation is iθ , φ  is a scale or dispersion 
parameter and iw  is a weighting constant.  The function ( )b ⋅  satisfies following 
properties: 
 
1. '( ) E( )i i ib Yθ μ= = , 
2. ''( ) Var( ) ( )i i ib Y vθ μ= = . 
 
The expression '( ) E( )i i ib Yθ μ= =  implies the natural or canonical link for that 
distribution so that ( )i igθ μ= .  Let us give some well-known examples.  When data are 
normally distributed, the density of the observations can be written as 
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Therefore, 2( ) / 2i ib θ θ=  so that '( )i i ibμ θ θ= = and 2φ σ= .  Hence, the canonical link 
for the normal distribution is the identity link. 
 
In case of a Bernoulli logistic model the density of the observations is given by 
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1φ = . Hence, the canonical link is the logit link. 
 
In summary, for the most common applications, the canonical links are: 

 
Distribution '( )bμ θ=  Canonical link, ( )g μ  
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One could use any differentiable link function with any error distribution. However, 
problems may arise in the fitting of the model by Newton-Raphson iteration.  For 
example, one could use the log link with a binomial error distribution in lieu of the 
usual logistic regression model with logit link.  However, this model does not ensure 
that estimated probabilities ( ) ( )x xπ μ=  are bounded by (0,1), and the iterative solution 
of the coefficients and the estimated information may fail unless a method for 
constrained optimization is used to fit the model. 
 
3. Generalized Linear Modeling 
 
The generalized linear model generalizes the basic normal linear model in two ways. 
First, the distribution of the observations can be any member of the exponential family.  
In many practical applications for example, the outcomes will be binary or the number 
of successes out of a certain number of trials. In that case one might assume a binomial 
distribution for the random component.  In other situations one might encounter 
nonnegative counts.  We could then assume a Poisson distribution for the random 
component.  If observations are continuous, such as a person's height or weight, a 
normal random component is often assumed.  All of the above examples belong to the 
exponential family of distributions. Second, the link between the expectation μ  and the 
linear predictor can be any monotone, differentiable function.  Thus a generalized linear 
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model has three components. 
 
1. The random component identifies the response variable Y and assumes a probability 
distribution for it that belongs to the exponential family of distributions.  The random 
component specification implies a specific relationship between the mean and the 
variance.  Sometimes it is also necessary to incorporate a scale or dispersion factor into 
the model, designated as φ .   
 
2. The systematic component specifies the explanatory variables used as predictors on 

the right hand side of the model equation: 
 

1 1 2 2 .p px x xα β β β+ + + +…  
 
3. The link describes the functional relationship between the systematic component 

and the expected value or mean, E( )Yμ = , of the random component.  For a general 
link function ( )g ⋅ , we have: 

 
1 1 2 2( ) .p pg x x xη μ α β β β= = + + + +…  

 
The best known link function is the so-called identity link ( )g μ μ= , which specifies a 
linear model for the mean response: 

1 1 2 2 .p px x xμ α β β β= + + + +…  
 
This is the form used in general linear models for continuous responses.  Other links 
permit the mean to be nonlinearly related to the predictors.  Specifically, for the 
binomial distribution we have that 0 1μ< < .  Hence, a link should satisfy the condition 
that it maps the interval (0,1) onto the entire real line.  The best known link functions 
for this situation are: 
 
a. the logit link 
 

log( /(1 )).η μ μ= −  
 
A GLM that uses the logit link is called a  logit model and constitutes the basis of 
logistic regression analyses. 
 
b. the probit link 
 

1( ).η μ−= Φ  
 
A GLM that uses the probit link is called a probit model and forms the basis of probit 
regression analyses. 
 
Similarly, when we are dealing with nonnegative counts and the distribution is Poisson 
we have that 0μ > .  Therefore a suitable link function in this situation is the log link 
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log( )η μ=  
A GLM that uses the log link is called a loglinear model.  
 
As pointed out in Section 2 each distribution for the random component has its own 
special function of the mean that is called its natural parameter.  For the normal 
distribution it is the mean itself, for the Poisson it is the log of the mean, and for the 
binomial it is the logit of the mean.  The accompanying link function, i.e., the identity, 
the log and the logit functions, respectively, are called the canonical links.  These 
canonical links are the most commonly used.  However, alternative link functions may 
also be applied. 
 
- 
- 
- 
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