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Summary 
 
Survival analysis refers to statistical procedures used to analyze data where the outcome 
of interest is time to an event. Examples of events include death and recurrence of 
illness. Events are designated as “failures” and time to the event is designated “survival 
time.” Study subjects who do not experience an event during the study period are 
designated as “censored” and are included in the analysis by counting the follow-up 
time they contributed during the study. Common methods for conducting survival 
analysis include calculating survival probabilities, plotting survival curves, and using 
mathematical models. The Kaplan-Meier method is a technique to empirically estimate 
survival probabilities and plot survival curves. Survival curves can be compared 
visually or by statistical tests such as the log-rank and Wilcoxon tests. The Cox 
proportional hazards model is a popular mathematical model used to estimate regression 
coefficients for variables predicting survival time. This model estimates a hazard rate 
for a set of predictor variables. Hazard rates can be divided to give a hazard ratio, a 
comparison of the hazard rates at different levels of predictor variables. An important 
assumption of the Cox proportional hazards model is that the hazard for an individual is 
proportional to that for another individual, regardless of time. Alternate models are 
available to analyze data when this assumption is not satisfied, including the stratified 
Cox model and the extended Cox model. The stratified Cox model estimates regression 
coefficients for variables that do satisfy the proportional hazards assumption, stratifying 
on variables that do not satisfy the assumption. The extended Cox model estimates 
regression coefficients for variables that do and do not satisfy the proportional hazards 
assumption.  
 
1. Introduction 
 
In certain types of epidemiologic studies, the outcome variable of interest is time until 
an event occurs. An example of this type of study is one that follows leukemia patients 
in remission over several weeks to see how long these patients stay in remission. 
Another example is a study that follows patients who received a heart transplant to find 
out how long these patients survive after receiving the transplant. A third example is a 
study that follows a group of persons who are initially disease-free over several years to 
see who develops heart disease. To analyze data from these types of studies, a collection 
of statistical procedures called survival analysis is needed. 
 
2. Basic Concepts of Survival Analysis 
 
In survival analysis, the occurrence of an event is often called a failure, and the time 
variable is often referred to as survival time because it designates the amount of time an 
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individual “survived” without having an event during a specific follow-up period. In 
this introductory description of survival analysis, only one event per individual is of 
interest. Though an individual might have more than one event during a specific follow-
up period, the procedures required to address this statistical complexity (known as 
“competing risks procedures”) are beyond the scope of this chapter. 
 
2.1. Censoring 
 
Another important aspect of survival analysis is that it can address censoring, which 
occurs when some information about an individual’s survival time is known, but the 
exact survival time is unknown. Data can be right or left censored. The most common 
form of censoring is right censoring.  
 
A person’s survival time can be right-censored if the actual survival time is at least as 
long as the time observed by the investigator. Three common situations where an 
individual’s survival time is right-censored are the following: an individual does not 
experience the event before the study ends, an individual is lost to follow-up during the 
study period, or an individual withdraws from the study. Figure 1 illustrates these 
situations.  
 
Left censoring occurs when the actual survival time is less than what is observed by the 
investigator. This can occur when an event has occurred by the time of first 
examination, and all that is known is an individual’s survival time is less than a certain 
value. For example, if a new disease were recognized at a certain time, individuals 
diagnosed at that time might have just developed disease, or they might have had 
existing disease that had not been previously recognized.   
 

 
Figure 1: Three common situations where survival time is right-censored 

 
An individual’s survival time can be left-truncated if it is incomplete at the left side of 
the individual’s follow-up period. For example, in a study where patients with HIV 
infection are followed to find out how long these patients survive after exposure to the 
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virus, follow-up might begin when a person first tests positive for the HIV virus. A 
person’s time of exposure to the virus, which evidently is sometime before the positive 
HIV test, might be unknown. The survival time for this individual is left-truncated, 
since the follow-up time from the first exposure to the virus up to the time of first 
positive HIV test is unknown. Nevertheless, left-truncated data is always right censored 
since the actual survival time is longer than the observed survival time. 
 
Since most censoring that occurs in survival data is right-censoring, this chapter only 
will consider right-censored data. In this text, an individual who experiences an event 
(i.e., fails) will be considered non-censored, while an individual whose exact survival 
time is unknown will be considered censored.  
 
Although censored observations are incomplete, their survival time up to the point of 
censorship can provide useful information. Utilization of censored survival time in 
analysis will be addressed in Section 2.4. 
 
2.2. Terminology and Notation 
 
The random variable for an individual’s survival time is denoted by T , for which values 
can range from zero to infinity. A specific time of interest for survival time T  is 
denoted by t .  
 
An important quantitative term considered in survival analysis is the survival function, 
denoted by ( )S t , which directly describes the survival experience of a study cohort. The 
survival function summarizes information from survival data by giving survival 
probabilities for different values of time. A survival probability is the probability a 
person survives longer than specified time t , or  

 
( ) ( )S t P T t= > . (1) 

 
Theoretically, all survival functions have the following characteristics (see Figure 2):  
 
♦ As time t  increases, ( )S t decreases.  
♦ (0) 1S = , since at the beginning of the study, no one has experienced an event, and 

the  probability of surviving past time 0 is unity. 
♦ ( ) 0S ∞ = , since if the study period were limitless, presumably everyone eventually 

would  experience the event, and the probability of surviving would 
ultimately fall to zero. 
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Figure 2: Theoretical survival function, ( )S t , versus time 
 

When using actual data, the plot of ( )S t  versus time t  usually results in a step function, 
as shown in Figure 3, rather than a smooth curve.  

 

 
Figure 3: ( )S t versus time as a step function 

 
Also, since a study period has a finite length and not everyone necessarily experiences 
an event by the end of the study period, the survival function curve does not always 
decrease to zero. 
 
Another important quantitative term considered in survival analysis is the hazard 
function, denoted by ( )h t . In contrast to the survival function, the hazard function 
summarizes survival data by focusing on failures. The hazard function gives the 
instantaneous potential per unit time for an event to occur, given that the individual has 
survived up to time t . Also, while the survival function is an expression for a survival 
probability, the hazard function is an expression for a failure rate. The mathematical 
formula for the hazard function is 

 

0

( | )( ) lim
t

P t T t t T th t
tΔ →

≤ < + Δ ≥
=

Δ
 (2) 

  
This expression defines ( )h t  as the limit, as the time interval tΔ  approaches zero, of the 
ratio of two quantities: 1) the probability that the event will occur between time t  and 
t t+ Δ , given that the survival time T  is greater than or equal to t , and 2) the time 
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interval tΔ . 
 
Sometimes called the conditional failure rate, the hazard function gives the conditional 
probability of failure per unit time. For any specified value of t , ( )h t  is always 
nonnegative and has no upper bound (see Figure 4). Furthermore, as will be shown later 
in this chapter, the hazard function is of particular interest because the mathematical 
model used to describe survival data is usually written in terms of the hazard function 
(see Sections 4, 6, and 7). 
 

 
 

Figure 4: Examples of hazard functions, ( )h t  
 
The hazard and survival function are related such that if the form of ( )h t  is known, 

( )S t  can be derived, and vice versa. The relationship between ( )h t  and ( )S t  can be 
shown in two mathematical formulae: 
 

0

( ) exp ( )
t

S t h u du
⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠
∫ , (3) 

 
1 ( )( )
( )

dS th t
S t dt

= − . (4) 

 
These formulae indicate that for a given value of t , a high ( )S t corresponds to a 
small ( )h t and a low ( )S t corresponds to a high ( )h t . 
 
2.3. Goals of Survival Analysis 
 
In survival analysis, the following three basic goals exist: 
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♦ Goal #1: Estimate and interpret survival and/or hazard functions from survival data 
 
To address this goal, survival function values could be plotted versus time ( ( )S t  on the 
y-axis and time t  on the x-axis). For example, Figure 5 shows the survival experience 
for a study cohort A. Cohort A’s survival probabilities quickly dropped to 15% early in 
the follow-up period, remained at that level for about 4 weeks, then gradually decreased 
close to zero by the end of the study period. 
 

 
Figure 5: Survival function for study cohort A 

 
♦ Goal #2: Compare survival and/or hazard functions 
 
To accomplish this, survival functions for more than one study cohort could be plotted 
against the same time axis. For example, Figure 6 shows the survival experience for 
study cohorts A (placebo group) and B (treatment group). As noted earlier, Cohort A’s 
survival probabilities dropped early in the follow-up period. In contrast, Cohort B’s 
survival probabilities dropped sharply much later in the study period. Also, 
the ( )S t curve for Cohort B lay above that for Cohort A consistently for the entire 
follow-up period, indicating that the treatment was more effective than the placebo for 
this time period. 
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Figure 6: Survival functions for cohort A (placebo) and B (treatment) 

 
♦ Goal #3: Assess the relationship of explanatory variables to survival time 
 
Assessing this relationship usually requires some form of mathematical modeling. 
Examples of this modeling, the Cox proportional hazards (PH) model, stratified Cox 
(SC) model, and extended Cox model, will be discussed in subsequent sections of this 
chapter (see Sections 4, 6, and 7, respectively). Analogous to linear and logistic 
regression modeling, mathematical modeling in survival analysis typically is used to 
describe the relationship between an exposure and survival time, controlling for the 
possible confounding and interaction effects of additional factors. In survival analysis, 
the measure of the effect of an exposure on survival time is called the hazard ratio, 
which is the ratio of failure rates for the unexposed and exposed groups. Similar to the 
odds ratio in the logistic regression model, the hazard ratio is expressed in terms of an 
exponential of a regression coefficient in the model for survival data. Also, the analysis 
strategy to find the most appropriate mathematical model for survival data is analogous 
to the strategy used when fitting logistic regression. 
 
- 
- 
- 
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