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Summary 
 
Computer-intensive statistical methods may suitably be defined as those which make 
use of repeating variants on simpler calculations to obtain a more illuminating or more 
accurate analysis. Many calculations that would have been unreasonably time-
consuming fifteen years ago can now be handled on a standard desktop PC. A common 
theme is the desire to relax assumptions, for example by replacing analytical 
approximations by computational ones, or replacing analytical optimization or 
integration by numerical methods. Many of methods developed recently rely on 
simulation, repeating a simple analysis many (often thousands) of times on different 
datasets to obtain some better idea of the uncertainty in the results of a standard 
analysis. This chapter discusses: resampling and Monte Carlo methods; numerical 
optimization and integration; density estimation and smoothing; and methods that try to 
improve on least squares regression and/or handle non-linearity. In this final category 
are models that work with smooth functions of predictors, neural networks, support 
vector machines, classification and regression trees, and methods that combine the 
predictions from multiple models. 
 
1. Introduction 
 
The meaning of ‘computer-intensive’ statistics changes over time: Moore’s Law (whose 
colloquial form is that there is a doubling of computing performance every 18 months) 
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means that what was computationally prohibitive 15 years ago is now a task for a small 
number of hours on a standard desktop PC. One of the things which has changed most 
about computing is that nowadays the leading supercomputers perform calculations not 
much faster than a desktop PC, but obtain their power through the ability to do many 
calculations in parallel. So a good current definition would be   
 
Computer-intensive statistical methods are those which make use of repeating variants 
on simpler calculations to obtain a more illuminating or more accurate analysis. 
 
A common theme is the desire to relax assumptions, for example by replacing analytical 
approximations by computational ones, or replacing analytical optimization or 
integration by numerical methods.  
 
Many of the methods developed recently rely on simulation, repeating a simple analysis 
many (often thousands) of times on different datasets to obtain some better idea of the 
uncertainty in the results of a standard analysis. Fortunately, at last most mathematical 
and statistical packages provide reasonable facilities for simulation, but there is still 
some legacy of the poor methods of random-number generation which were widespread 
in the last half of the 20th century.  
 
2. Resampling and Monte Carlo Methods 
 
The best-known simulation-based method is what Efron called the bootstrap. To 
illustrate the idea, consider the simplest possible example, an independent identically 
distributed sample 1 nx … x, ,  from a single-parameter family of distributions { ( )}F x θ,  

and an estimator θ̂  of θ . We are interested in the sampling properties of θ̂ , that is the 
variability of θ̂  about θ . Unfortunately, we only have one sample, and hence only one 
θ̂ , but can we ‘manufacture’ more samples. Two ways spring to mind:  

1. Draw a sample of size n  from ˆ( )F x θ,  or  
2. Draw a sample of size n  from the empirical distribution nF  of 1 nx … x, , .  

In each case we can compute a new estimate θ̂
∗  from the new sample, and use the 

variability of θ̂
∗  about θ̂  as a proxy for the variability of θ̂  about θ . Since we can 

draw B  such samples, and that given enough computing power B  could be large, we 
can explore in detail the variability of θ̂

∗  about θ̂ : the issue is ‘only’ how good a proxy 
this is for the distribution we are really interested in.  

2.1. The Bootstrap 

The second possibility does not even require us to know F , and is what is known as 
(non-parametric) bootstrapping: the first is sometimes known as the parametric 
bootstrap. The name comes from the phrase 
 
“pull oneself up by one’s bootstraps” 
 
which is usually attributed to the fictional adventures of Baron Munchausen. Sampling 
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from nF  amounts to choosing independently n  of the data points with replacement, so 
almost all re-samples will contain ties and omit some of the data points: on average only 
about 1 1 63e− / ≈ % of the original points will be included.  
 
The bootstrap paradigm is that the proxy distribution provides a good approximation. 
Bootstrapping has been embraced with great enthusiasm by some authors, but does have 
quite restricted application. Like many of the techniques discussed in this chapter, it is 
easy to apply but can be hard to demonstrate the validity.  
 
If we accept the paradigm, what can we do with the proxy samples? We can explore 
aspects such as the bias and standard error of θ̂

∗ , and hence replace asymptotic 
distribution theory by something that we hope is more accurate in small samples. Much 
research has been devoted to finding confidence intervals for θ . Suppose we want a 
level 1 α−  (e.g. 95%) confidence interval, and let 2kα/  and 1 2k α− /  be the corresponding 

percentiles of the empirical distribution of θ̂
∗ . The percentile confidence interval is 

2 1 2( )k kα α/ − /, . The basic confidence interval is 1 2 2
ˆ ˆ(2 2 )k kα αθ θ− / /− , − , that is the 

percentile CI reflected about the estimate θ̂ . (The two are frequently confused.) The 
advantage of the percentile distribution is that it transforms as one would expect, so that 
taking the percentile interval for logφ θ=  is the log of percentile interval for θ , but if 
θ̂  is biased upwards, the percentile interval will be doubly biased upwards.  
 
There are several ways to (possibly) improve upon the basic and percentile intervals. 
Both aBC  intervals and the double bootstrap use intervals ( )

l u
k kβ β,  and choose the 

β ’s appropriately, in the case of the double bootstrap by a second layer of 
bootstrapping. As the chosen percentiles tend to be quite extreme, these methods often 
need many bootstrap re-samples and can be seriously computationally intensive even 
with the resources available in 2004.  
 
It is less easy to apply bootstrapping to more structured sets of data. Suppose we have a 
regression of n  cases of y  on x . It may be possible to regard the n  cases ( )y,x  as a 
random sample and apply simple bootstrapping to cases. However, if this were the 
result of a designed experiment we do want to cover the whole set of x  values chosen, 
and even for an observational study we usually want to estimate the variability 
conditional on the x s actually observed. One idea is to resample the residuals and 
create new samples treating these as ‘errors’: the various approaches can lead to quite 
different conclusions. Bootstrapping time series or spatial data is trickier still.  

2.2. Monte Carlo Methods 

The other possibility, to simulate new datasets from the model, makes most sense in a 
significance testing situation. Suppose we have a simple null hypothesis 0 0:H θ θ= . 
Then we can simulate m  samples from 0H  and get new estimates ˆiθ  from those 
samples. Then under 0H  we have 1m +  samples from 0( )F θ, , the data and the m  we 
generated. Suppose we have a test statistic ( )T θ , large values of which indicate a 
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departure from the null hypothesis. We could compare ˆ( )T θ  to the empirical 
distribution of the ˆ( )iT θ  as an approximation to the null-hypothesis distribution of T , 

that is to compute ˆˆ ˆ{ ( ) ( )}ip # i T T mθθ= : > / . However, Monte Carlo tests use a clever 
variation: a simple counting argument shows that  
 

ˆ( ( ) is amongst the largest)
1

rP T r
m

θ =
+

. 

 
Thus we can obtain an exact 5% test by taking 1 19r m= , =  or 5 99r m= , =  or 

25 499r m= , = ,….  
This example has many of the key features of computer-intensive methods: it makes use 
of a simple calculation repeated many times, it relaxes the distributional assumptions 
needed for analytical results, and it is in principle exact given an infinite amount of 
computation. Rather than considering large amounts of data, we consider large amounts 
of computation, as the ratio of cost of computation to data collection is continually 
falling.  
 
The simulation-based methods are only feasible if we have a way to simulate from the 
assumed model. In highly-structured situations we can find that everything depends on 
everything else. This was first encountered in statistical physics (Metropolis et al.) and 
spatial statistics (Ripley, Geman & Geman). Those authors devised iterative algorithms 
that only used the conditional distributions of small groups of random variables given 
the rest. As successive samples are not independent but form a Markov chain (on a very 
large state space) these methods are known as MCMC, short for Markov Chain Monte 
Carlo. This is now becoming the most commonly used methodology for applied 
Bayesian statistics.  
 
3. Numerical Optimization and Integration 
 
A simplistic view of statistical methods is that they reduce to either the optimization or 
the integration of some function, with Bayesian methods majoring on integration. For 
reasonably realistic models numerical integration is often (extremely) computer-
intensive. Simulation provides a very simple way to perform an integration such as 

( )Ef Xφ = : just generate m  samples 1 mX … X, ,  from the distribution of X  and report 
the average of ( )if X . It is not usually a good way to find an accurate estimate of φ , for 
the central limit theorem (if applicable) suggests that the average error decreases at rate 
1 m/ . Nevertheless, this is the main use of MCMC, to obtain a series of nearly-
independent samples from a very high-dimensional joint distribution and then integrate 
out all but a few dimensions just by making f  depend on a small number of variables 
(often just one).  
 
There are competing methods of integration. In a moderate number of dimensions it 
may be better to use non-independent samples iX  designed to fill the sample space 
more evenly, sometimes called quasi-Monte Carlo.  
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Numerical optimization can also be computer-intensive, particularly when there are 
constraints on the parameters. Considerable progress has been made in recent years and 
it is worthwhile to seek out state-of-the-art software for numerical optimization. 
  
Several areas of modern statistics combine both integration and optimization via 
maximum likelihood estimation of models with latent variables. Two classic examples 
are factor analysis and linear mixed effects models. In each case the integration can be 
performed numerically in the classic cases with normally-distributed latent variables, 
but the optimization is often challenging. However, if we consider discrete rather than 
continuous observations such as generalized linear mixed models the integration has to 
be performed numerically and we can easily find ourselves numerically optimizing a 
likelihood each evaluation of which involves many high-dimensional integrations, 
resulting in weeks of computation to fit a single model.  
 
- 
- 
- 
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