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Summary 
 
This paper gives an overview of the application of statistical methods to genetic data. 
The genetic data may take the form of allelic data from specific genes or from marker 
loci, or it may be phenotypic data from which we wish to infer something about the 
genetic components of the phenotypes. The types of analyses discussed here are of 
relevance to plant and animal breeding, as well as human genetics. The article covers 
the basic analysis of allelic data, relatedness, genetic improvement of plants and animals 
and the mapping of genetic loci and of quantitative trait loci. Related articles in this 
topic deal with the analysis of genetic data of populations (see Population Genetics) and 
the analysis of genetic data at the DNA sequence level. 
 
1. Introduction 
 
The scientific fields of statistics and genetics have developed side by side, with 
statistical analysis being applied to many types of genetic data, and with the field of 
genetics provoking new developments in statistical theory. In fact some modern 
parameter search procedures (“genetic algorithms”), which could be used in any field of 
statistical application, even rely on the principles of genetics. The first genetic 
principles were formulated by the Austrian monk, Gregor Mendel, in 1865. Although he 
did not apply statistical techniques (they had not been developed at that time), his data 
is amenable to such analysis, and subsequent researchers have done this. Mendel’s 
results were found to stand up to these analyses, except that there was evidence that the 
results fitted the hypotheses much better than would be expected by chance, and many 
authors have commented on possible reasons for this. 
 
In the early 1900s, the English biometricians, Francis Galton and Karl Pearson, began 
applying the statistical techniques of correlation and regression to investigate the 
similarity of relatives. It was some years before these approaches were reconciled with 
the Mendelian principles, by R. A. Fisher and Sewell Wright. Since then until the late 
1900s, most statistical analyses of genetic data have assumed that the trait of interest is 
controlled by either a few genes, or by the combination of many genes of small effect 
(the infinitesimal model). The former method was usually applied to discrete 
characteristics, while the latter method was usually (but not exclusively) applied to 
continuously measured (quantitative) characteristics. 
 
Recently there has been widespread interest in finding genes that cause variation in 
quantitative characteristics, so called quantitative trait loci. The analyses of data to 
address this issue have required a combination of single gene and infinitesimal models. 
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Statistical analysis of genetic data is primarily concerned with the following areas of 
application: plant and animal breeding, medical genetics, forensic genetics, and the 
study of natural populations. Methods specific to the last of these are dealt with 
elsewhere (see Population Genetics).  
 
2. Basic Principles 
 
Some of the principles of statistical genetics underlie the methods used in all the 
application areas, and they will be dealt with in this section.  
 
2.1. Allele and Genotype Frequencies 
 
Suppose we are concerned with a single codominant locus, A, for a diploid organism, 
and that there are v possible alleles, A1, A2, … Av. The possible genotypes are the v 
homozygous types A1A1, A2A2, … AvAv, and the v(v-1)/2 heterozygous types AiAj, i j< . 
The population is characterized by the proportions (or frequencies), Pij, of these 
genotypes. These can be estimated by the corresponding proportions of these genotypes 
in a random sample of individuals from the population. Suppose we have a sample of 
size n, with nij individuals having genotype AiAj. Then 
 
ˆ /ij ijP n n=  (1) 

 

is an intuitive estimator of Pij. To find properties of these estimators we assume that the 
sample was drawn with a multinomial distribution. This is appropriate when the sample 
size is large (otherwise the hypergeometric distribution should be used). We find 
 

ˆVar( ) (1 ) /
ˆ ˆCov( , ) / , ( , ) ( , ).
ij ij ij

ij i j ij i j

P P P n

P P P P n i j i j′ ′ ′ ′

= −

′ ′= − ≠
 (2) 

 

Also of interest are the allele frequencies. These are estimated from the sample of 
genotypes as follows: 
 

2ˆVar( ) ( 2 ) / 2 ,i i ii ip p P p n= + −  (3) 
 

where pi is the frequency of allele Ai. 
 
The variance still relies on the multinomial sampling properties for the genotypes, and 
is 
 

2ˆVar( ) ( 2 ) / 2 .i i ii ip p P p n= + −  (4) 
 

Equation (3) shows how allele frequencies can be derived from genotype frequencies, 
but to go in the reverse direction we need to make some assumptions about the genetic 
structure of the population. One of the simplest assumptions is that the population is in 
Hardy-Weinberg equilibrium, which requires that the population is large, undergoes 
random mating, and that there is no selection, mutation or migration. With this 
assumption 
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P p
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 (5) 

 
The assumption means that alleles, as well as genotypes, are sampled at random from 
the population, and variances and covariances are found using the multinomial 
distribution for alleles, e.g. 
 

ˆVar( ) (1 ) / 2 .i i ip p p n= −  (6) 
 

Further complexity arises when loci are sex-linked, or when there are dominance 
relationships among the alleles (i.e. when one allele masks the presence or absence of 
another), when the population is sub structured or for other types (possibly mixed) of 
ploidy. 
 
2.2. Hypothesis Tests  
 
Genetic data may be collected with the aim of testing a particular hypothesis, or we may 
wish to test a hypothesis as a check on the validity of assumptions, before progressing 
with further analysis. This section discusses the tests for a number of hypotheses. 
 
2.2.1. Hardy-Weinberg Disequilibrium 
 
Hardy-Weinberg equilibrium can be tested using a chi-square goodness-of-fit test. For 
each genotype (i,j) we have the observed number (nij), and the expected number (Eij = n 
times the Hardy-Weinberg frequencies). We then calculate the chi-squared statistic: 
 

2

2

( )ij ij
genotypes

ij

O E

X
E

−

=
∑

  (7) 

 
which is asymptotically distributed as 2

dfχ , where df, the degrees of freedom, is equal to 
v(v-1)/2, the number of genotypes minus the number of parameters estimated (one for 
each allele). There are a number of conditions for the validity of chi-square tests, such 
as all the Eij being at least five. This is unlikely to be the case where there are many 
alleles, with several at low frequency, but there have been alternative tests developed, 
such as likelihood ratio tests, exact tests and permutation tests. 
 
2.2.2. Linkage Equilibrium 
 
When data are collected on more than one locus, one question we may wish to address 
is whether a pair of loci act independently, i.e. the probability of having a certain allele 
at one of the loci does not depend on the allele at the other locus. When this is the case 
the loci are in linkage equilibrium. Let a second locus be denoted by B, its alleles by Bj, 
j=1,2,…,w. Then the disequilibrium between alleles Ai and Bj is 
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ij ij i jD p p p= −  (8) 
 
where pij denotes the gametic frequency of Ai/Bj combinations, pi is the frequency of Ai 
and qj is the frequency of Bj. To use the coefficient in this form requires that gametic 
data is sampled, or that gametic types can be inferred from family data, or (in the case 
of both loci on the same chromosome) that single chromosomes have been sampled. 
 
Linkage equilibrium can be tested using a chi-square goodness of fit test, where the 
observed numbers are ˆ ijnp (where n is the number of gametes sampled), while the 
expected numbers are ˆ ˆi jnp q . The chi-square statistic can be written as 
 

2
2

1 1

ˆ

ˆ ˆ
v w ij

i j
i j

nD
X

p q= =
=∑ ∑  (9) 

 
where the disequilibrium coefficient is estimated (using maximum likelihood) by 
replacing frequencies with their estimates. The df for the test are ( )( )-1 1v w− . As in the 
case of testing Hardy-Weinberg equilibrium alternative testing methods are available 
and may be preferable when the number of alleles is large and/or the sample size is 
small. 
 
When genotypes are scored, a direct count of Ai/Bj combinations is not usually possible. 
Under the assumption of random mating, genotypic frequencies are the products of 
gametic frequencies. This allows gametic frequencies to be estimated (for example, 
using the expectation-maximization algorithm). Without this assumption it will be 
necessary to estimate and test composite measures of genotypic disequilibria, 
incorporating both gametic and non-gametic (within individual) disequilibria. 
 
2.3. Segregation 
 
The experimental results that lead Mendel to propose a particulate model of inheritance 
were the observations of segregation patterns in his crosses. The data from experiments 
such as these can be tested to see whether they fit certain models, for example, by using 
a chi-square goodness of fit test. For example, in a cross where both parents have 
genotype A1A2, we would expect progeny numbers in the ratios 1:2:1 for the genotypes 
A1A1, A1A2, and A2A2 respectively. If allele A1 is dominant to A2, then genotypes A1A1 
and A1A2 cannot be distinguished phenotypically. In this case progeny numbers are 
expected in the ratio 3:1 for A1A1 + A1A2 and A2A2. Various other crosses can be tested 
in a similar way. Essentially these are testing that the alleles at the locus are segregating 
in the ratio 1:1, known as Mendelian segregation. 
 
Mendel also performed experiments looking at more than one character at a time. One 
such experiment concerned seed color (green or yellow) and seed shape (round or 
wrinkled). In the F2 generation (from pure breeding lines) he obtained the numbers 
shown in Table 1. It was hypothesized that each character had a dominant type (round 
dominant to wrinkled, yellow dominant to green), and that the two characters 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

BIOMETRICS – Vol. II - Statistical Genetics - Ken G Dodds 

©Encyclopedia of Life Support Systems (EOLSS)  

segregated independently. In this case the types would be found in the ratios 9:3:3:1 as 
shown in Table 1. A chi-square goodness of fit test of these data gives χ2 = 0.47 with 3 
df (not significant). Such a test is actually comprised of three components: a test of a 3:1 
ratio for shape, a test of a 3:1 ratio for color, and a test of no association between the 
two characters. The χ2 statistic can be partitioned into each of these components to give 
a 1 df test for each. The last of these (no association) is actually a test for linkage, a 
topic that will be covered in detail later because of its importance in medicine and 
agriculture. 
 

Shape Color Number Ratio 
Round Yellow 315 9 
Wrinkled Yellow 101 3 
Round Green 108 3 
Wrinkled Green 32 1 

 
Table 1:  Numbers of F2 progeny for each combination of two characteristics 

 
3. Relatedness 
 
3.1. Inbreeding 
 
Inbreeding arises when the parents of an individual are related, i.e. they have an 
ancestor in common. The inbreeding coefficient of an individual is defined as the 
probability of the two alleles at a locus being identical by descent (IBD), i.e. are copies 
of the same allele from a common (maternal and paternal) ancestor. If information on 
ancestors is known, then  

1 (1 )
2

m

X AF F⎛ ⎞= +⎜ ⎟
⎝ ⎠∑  (10) 

 
the inbreeding coefficient (F) can be calculated as where the sum is over all paths from 
one parent of the individual (X) to a common ancestor (A) and back to the other parent. 
The number of individuals in a path (not counting X) is denoted by m. As a simple 
example, suppose an individual’s parents (M and P) are half-sibs, with common parent 
A. Then there is a single path relevant to the inbreeding calculation (M → A → P), and 
we find ( )1 / 8 1/ 8AF F= + =  if A is not inbred. 
 
Inbreeding can also be estimated using genetic marker data, either for finding a 
population average inbreeding, or on an individual basis. To obtain good estimates, 
quite large genetic samples are required.  
 
3.2. Kinship 
 
A measure of the relationship between two individuals is the inbreeding of a 
hypothetical progeny of the two individuals, and is the probability that an allele chosen 
at random from one individual is IBD with an allele chosen at random from the other 
individual. This is called their coancestry, or coefficient of kinship (f). The relatedness 
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(r) is defined as twice this value. The genetic relationship between two individuals can 
be further delineated by considering the probability that they share 0, 1 or 2 alleles IBD 
at a locus. These probabilities are denoted by k0, k1 and k2 respectively, and they sum to 
one. In addition, 2

1 0 24k k k≥  for all valid relationships. We also have that 
          

1 2/ 2r k k= +  (11) 
 
As shown in Table 2, some relationships, which have common values of r, have 
differing values of the ks. 
 

Relationship r k0 k1 k2 
Self (Monozygous twin) 1 0 0 1 
Parent-Offspring 0.5 0 1 0 
Full-sibs 0.5 0.25 0.5 0.25 
Half-sibs, Uncle-niece, Grandparent-grandchild 0.25 0.5 0.5 0 
Cousin 0.125 0.75 0.25 0 

 
Table 2: Relationship coefficients for some common relationships 

 
3.3. Estimating Relatedness 
 
There arise a number of situations in which the relatedness between pairs of individuals 
is desired. In the absence of known pedigree relationships, marker data can be used to 
infer this information. Relationship estimation can be used to avoid matings between 
close relatives, to estimate genetic parameters without requiring pedigreed populations, 
and to study social behavior (e.g. through reconstructing a genealogy). 
 
There are a number of formulas suitable for estimating the relatedness between 
individuals. One of these is the measure of D. C. Queller and K. F. Goodnight: 
 

2

1
2

1

( )
ˆ

( )

i jl jl ijl
i j l

ijl jl ijl
i j l

p p

r
p p

δ

δ

′

=

=

−

=

−

∑∑∑

∑∑∑
 (12) 

 
where i indexes the two individuals, j indexes loci, l indexes the 2 alleles of i, i’≠ i, i.e. 
refers to the other individual, and δ is an indicator with value 1 when i has allele l at 
locus j.  
 
An alternative measure (M. Lynch and K. Ritland) is given by 
 

( ) ( ) 41ˆ
(1 )( ) 4

a bc bd b ac ad a b
j

ab a b a bj

p S S p S S p pr w
W S p p p p

+ + + −
=

+ + −∑   (13) 

where 
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(1 )( ) 4
2

ab a b a b
j

a b

S p p p pw
p p

+ + −
= ,  j

j

W w=∑ ,    

j indexes loci, a and b are the two alleles for individual X and c and d are the two alleles 
for individual Y at the jth locus, S is an indicator function, taking the value one if the 
two alleles are the same (zero otherwise). The w are weights calculated as the inverse of 
the sampling variance assuming no relatedness. There are similar expressions for 
estimating the k coefficients. 
 
An alternative to these methods is maximum likelihood estimation. The likelihood can 
be written  
as: 
 

0 0 1 1 2 2( )
loci

L k P k P k P= + +∏  (14) 

 
where for each locus, Pm is the probability of the observed genotypes conditional on m 
alleles being IBD. In general, numerical methods are required to maximize this 
likelihood and find the estimates of the km. 
 
Accurate estimation of relatedness requires the use of many independently segregating 
loci. For example, using the Queller-Goodnight method to estimate the relatedness for 
full-sibs using 20 loci, each with three alleles at equal frequency, has a standard error of 
0.13 (for the mean of 0.5). 
 
- 
- 
- 
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