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Summary 
 
Bioinformatics is a newly emerging field that is increasingly being widely viewed as a 
more fundamental discipline at the intersection of the biological sciences with the 
mathematical, statistical, and physical sciences and chemistry and information 
technology. This review chapter touches briefly on those aspects of bioinformatics that 
will be of interest to biometricians, including biological sequence analysis and 
alignment (Section 2), applications of hidden Markov models in bioinformatics (Section 
3), evolutionary models and phylogenetic reconstruction (Section 4), gene expression 
analysis and microarrays (Section 5), proteomics (Section 6) systems biology (Section 
7) and federated data integration and bio-grids (Section 8), finishing with a brief 
discussion highlighting the exciting future of the field during the coming decades. 
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1. Introduction  
 
Bioinformatics is an emerging field that was once considered to be the part of 
computational biology that explicitly dealt with the management of the increasing 
number of large databases, including methods for data retrieval and analyses, and 
algorithms for sequence similarity searches, structural predictions, functional 
predictions and comparisons and so forth. There has been phenomenal growth of life 
science databases. For example, the most widely used nucleotide sequence database is 
Genbank that is maintained by the National Center for Biotechnology Information 
(NCBI) of the US National Library of Medicine; as of February 2003 it contained 28.5 
billion nucleotides from 22.3 million sequences. Its size continues to grow 
exponentially as more genomes are being sequenced. However, there is a very large gap 
(that will take a long time to fill) between our knowledge of the functioning of the 
genome and the generation (and storing) of raw genomic data.  
 
Bioinformatics involves the analysis of biological data. So very recently, the field of 
bioinformatics has been rapidly evolving, not only due to the impact of the various 
genome projects, but also with the development of experimental technologies, such as 
microarrays for gene expression analyses and mass spectrometry for detection of 
protein-protein interactions. Currently bioinformatics is being increasingly widely 
viewed as a more fundamental discipline that also encompasses mathematics, statistics, 
physics and chemistry. Further, the field is already looking forward to a ‘systems 
biology’ approach and to simulations of whole cells with incorporation of more levels 
of complexity. A recent editorial in the journal Bioinformatics noted that ‘a major 
upcoming challenge for the bioinformatics community [is] to adopt a more statistical 
way of thinking and to interact more closely with statisticians’.  
 
The stated goal for many researchers is for developments in Bioinformatics to be 
focused at finding the fundamental laws that govern biological systems, as in physics. 
However, if such laws exist, they are a long way from being determined for biological 
systems. Instead the current aim is to find insightful ways to model limited components 
of biological systems and to create tools which biologists can use to analyze data. 
Examples include tools for statistical assessment of the similarity between two or more 
DNA sequences or protein sequences, for finding genes in genomic DNA, for 
quantitative analysis of functional genomics data, and for estimating differences in how 
genes are expressed in say different tissues, for analysis and comparison of genomes 
from different species, for phylogenetic analysis, and for DNA sequence analysis and 
assembly. Tools such as these involve statistical modeling of biological systems. 
Although the most reliable way to determine a biological molecule’s structure or 
function is by direct experimentation, there is much that can be achieved in vitro, i.e. by 
obtaining the DNA sequence of the gene corresponding to an RNA or protein and 
analyzing it, rather than the more laborious finding of its structure or function by direct 
experimentation. 
 
Much biological data arise from mechanisms that have a substantial probabilistic 
component, the most significant being the many random processes inherent in 
biological evolution, and also from randomness in the sampling process used to collect 
the data. Another source of variability or randomness is introduced by the 
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biotechnological procedures and experiments used to generate the data. So the basic 
goal is to distinguish the biological ‘signal’ from the ‘noise’. Today, as experimental 
techniques are being developed for studying genome wide patterns, such as expression 
arrays, the need to appropriately deal with the inherent variability has been multiplied 
astronomically. For example, we have progressed from studying one or a few genes in 
comparative isolation to being able to evaluate simultaneously thousands of genes (or 
expressed sequence tags) Not only must methodologies be developed which scale up to 
handle the enormous data sets generated in the post-genomic era, they need to become 
more sensitive to the underlying biological knowledge and understanding of the 
mechanisms that generate the data. For biometricians, research has reached an exciting 
and challenging stage at the interface of computational statistics and biology. The need 
for novel approaches to handle the new genome-wide data (including that generated by 
microarrays) has coincided with a period of dramatic change in approaches to statistical 
methods and thinking. This ‘quantum’ change has been brought about, or even has been 
driven by, the potential of ever more increasing computing power. What was thought to 
be intractable in the past is now feasible, and so new methodologies need to be 
developed and applied.  
 
Unfortunately too many of the current practices in the biological sciences rely on 
methods developed when computational resources were very limiting and are often 
either (a) simple extensions of methods for working with one or a few outcome 
measures, and do not work well when there are thousands of outcome measures, or (b) 
ad-hoc methods (that are commonly referred to as ‘statistical’ or ‘computational’, or 
more recently ‘data mining’! methods) that make many assumptions for which there is 
often no (biological) justification. The challenge now is to creatively combine the power 
of the computer with relevant biological and stochastic process knowledge to derive 
novel approaches and models, using minimal assumptions, and which can be applied at 
genomic wide scales. Such techniques comprise the foundation of bioinformatic 
methods in the future. 
 
2. Biological Sequence Analysis 
 
2.1. Background 
 
With the advent of whole genomes becoming available for many species, as well as 
many other (usually extremely large) databases, such as protein sequence databases, 
increasingly biologists are asking questions about whether some query sequence of 
interest to her or him is significantly similar to some other sequence/s in one (or more) 
of these databases. If some of these similar sequences are likely to correspond to genes 
or proteins with known functions, then by association it is inferred that the function of 
the query sequence is related.  
 
Essentially an evolutionary model is assumed where the two sequences have diverged 
from some common ancestor by the process of mutation and selection. Mutations can be 
such as to change one nucleotide to another in a DNA sequence or change one amino 
acid to another in a protein. Natural selection is a type of screening process that favors 
neutral or advantageous mutations, insertions and deletions compared with more 
deleterious mutations, insertions and deletions.  
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Consider the following two sequences 
 

11 2, , , nu u u…………  
 

21 2, , , nv v v…………  
 
where iu  and jv  represent the elements of the set {A,G,C,T} in the case of DNA 
sequences, and have the letters from the set of 20 amino acids in the case of protein 
sequences. Comparisons of two sequences usually cannot distinguish between whether a 
deletion has occurred in one sequence or an insertion in the other. Insertions and 
deletions are referred to as gaps, and in scoring an alignment these are penalized by 
assigning them a ‘cost’. The most widely used program is BLAST (Basic Local 
Alignment Search Tool) and its variants, and the more heuristic algorithm FASTA is 
also widely used. This method starts with an initial word search - finding the best and 
longest continuous set of ungapped words in a database - as a starting point. The length 
of this - the initial k-tuple or word size - is the primary determinant of the speed and 
sensitivity of the search.  In the remainder of this section we overview sequence 
analysis from the viewpoint of basic BLAST search, separately discussing the three 
steps, namely (i) finding a scoring system for comparing elements of two sequences (ii) 
finding optimal alignments, (iii) assessing significance.  
 
2.2. Scoring Systems 
 
For comparing DNA sequences, simple nucleotide scores can be used, such as m+  for a 
match, 'm−  otherwise (that may be equal to m ), corresponding to a simple 
evolutionary model in which all nucleotides are equally common and all substitutions 
are equally likely. However, if the sequences of interest code for protein, it is usually 
better to compare the protein translation to amino acids, since, after only a small amount 
of evolutionary change, if simple nucleotide substitutions are used there is less 
information with which to deduce homology. Substitution matrices are used for amino 
acid alignments. These are matrices in which each possible residue substitution is given 
a score reflecting the probability that it is related to the corresponding residue in the 
query. The alignment score will be the sum of the scores for each position in the aligned 
sequence.  
 
These scores are obtained as follows. The null hypothesis is that iu  and jv  occur 

independently, and hence the probability of the two sequences is 
i ju vp p∏ ∏ . The 

alternative hypothesis is that the two sequences have diverged from the same ancestor. 
Denoting the probability that iu  and jv  have evolved independently from kw  as 

i ju vp  

then the probability for the whole alignment is 
i ju vp∏ . The ratio of these two 

probabilities gives the likelihood ratio comparing the two hypotheses, and to obtain an 
additive ‘scoring’ system, logarithms are taken, so  
 

( )( , ) log
i j i ji j u v u vs u v p p p=  (1) 
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For proteins we have a 20 20×  matrix, and the commonly used scoring matrices are 
PAM and BLOSUM matrices.  
 
Elements in the accepted point mutation PAMn matrices are computed from a Markov 
chain model of the replacement of one amino acid by another following its initial 
occurrence by mutation, taking into account the frequencies of the amino acids, their 
respective mutabilities and the probabilities for replacement of amino acids. A PAM1 
substitution matrix has the property that it is derived from a Markov chain for which the 
‘average probability’ of a change from one amino acid to another in the chain is 0.01. A 
PAMn substitution matrix is found from the nth power of the Markov chain transition 
matrix that gave the PAM1 substitution matrix.  
 
Now the elements in the (symmetric) BLOSUMx matrix are found by clustering protein 
sequences into ‘blocks’ of aligned sequences such that they have x% identity, and then 
an estimated and rounded log likelihood ratio is determined. The BLAST web page at 
NCBI gives the matrices for x = 45, 62 & 80. The 20 diagonal elements are all positive, 
while the 190 distinct off-diagonal elements (i.e. pairwise comparisons) are generally 
negative. Note, the larger n is for a PAM matrix the longer is the evolutionary distance, 
whereas for BLOSUM matrices, smaller values of x correspond to longer evolutionary 
distance.  
 
In choosing to use, say a PAMn (or BLOSUMx) substitution matrix, an assumption is 
being made about the value of n (or x) and hence an implicit assumption about how long 
in the past the most recent common ancestor existed. Such an assumption is most 
unlikely to be correct, especially since databases contain information about many 
species, and the most recent ancestor of these various species with the species of the 
query sequence might vary markedly. Commonly chosen values are 62x = , 120n =  or 
250. Problems can arise if too small a value of n is chosen. For example, suppose that 
with the correct choice n' the probability that iu  and jv  have evolved independently 
from kw  is '

i ju vp , then the mean score is proportional to  
 

( )
,

' log '
i j i j i ju v u v u v

i j

p p p p∑  (2) 

 
As 'n →∞ , the mean score becomes negative, and the more negative this value, the 
more likely it is that the null hypothesis will be accepted. For example, in the simple 
symmetric model (described later), if the value 100n =  is chosen, the mean score is 
negative for n' ≥ 193. Alternatively if too small a value of n is chosen the test is less 
powerful. Note that trying to overcome this problem by choosing a variety of 
substitution matrices leads to one of the many multiple testing problems inherent in the 
use of BLAST (and discussed further below). 
 
When comparing non-coding DNA sequences, a more complex model than the above 
simple evolutionary model, in which transitions are more likely than transversions, 
yields different ‘mismatch’ scores for transitions and transversions. The best scores to 
use will depend on whether one is comparing relatively diverged or closely related 
sequences.  
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2.3. Sequence Alignment 
 
Given a scoring system, next we need an algorithm to find an optimal alignment for a 
pair of sequences. Alignments can be global or local. To find the global alignment of 
protein sequences, Needleman & Wunch developed a dynamic programming algorithm, 
and there have been many extensions. The most widely used local alignment method is 
that given by Smith & Waterman (S-W) by first constructing a matrix M indexed by i 
and j corresponding to iu  and jv  in our sequences. Let ijS  be the score of the optimal 
alignment between the subsequence up to iu , and the subsequence up to jv . Then the S-
W algorithm is given by 
 

1, 1

1, , 1

max(0,   ( , ),

  gap penalty,   

gap penalty)

ij

i j i j

i j i j

S

S s u v

S S
− −

− −

=

+

+

+

 (3) 

 
The score S can never become negative, and hence always there will be areas of 
similarities even if there are long mismatches or gaps in between. 
 
2.4. Assessment of Significance 
 
2.4.1. Overview of Basic Theory 
 
Having obtained an optimal alignment, the next step is to assess its significance, namely 
is this a significantly good alignment, i.e. match? In other words how does one test the 
null hypothesis that there is no significant homology between the two sequences against 
the alternative hypothesis that there is significant homology? The basic theory 
underlying the answer to this question was due to Sam Karlin, and is based on random 
walk theory, on renewal theory and on asymptotic distribution theory.  
 
Consider Table 1 that gives a simple case of two aligned DNA sequences (of equal 
length). The bold position numbers are those in which the same nucleotide occurs in 
both sequences (i.e. ‘matches’ occur). Suppose we give a score +m for a match and –m 
where the nucleotides are different. Comparing the two sequences (starting from the 
left, with value zero) we can find the accumulated value of the scores, namely m, 2m, m, 
0, –m, ... (given in bottom row of Table 1; alternatively a graph representation could be 
used). This is a simple random walk with steps m± . Ladder points are those that are 
lower than any previously reached point, and occur when the values 0, –m, –2m, … are 
first reached – in this example at positions 1 4L = , 2 5L = , 3 8L = , ... (all shown in bold 
in the bottom row). 
 
The term ‘upwards excursion’ describes that part of the walk between two consecutive 
ladder points, iL  and 1iL + , and interest is in the maximum height starting from the first 
ladder point iL . (Where ladder points fall at consecutive positions, such as 8 & 9 above, 
then this value is zero.) The maximum height achieved by the various excursions is the 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

BIOMETRICS – Vol. II - Bioinformatics: Past, Present and Future - Susan R. Wilson 

©Encyclopedia of Life Support Systems (EOLSS)  

basis for the test statistic to evaluate the homology of the two sequences. In the above 
example the heights of the various upward excursions are, respectively, 0, 1, 0, 0, 3, 4, 
with a maximum value of 4. 
 

1 2 3 4 5 6 7 8 9 10 
G G T A C T G G G G 
G G G G C C T T C C 
m 2m m 0 -m 0 -m -2m -3m -4m 

11 12 13 14 15 16 17 18 19 20 
A A C T T T T T C C 
A A C C G G T T A A 
-3m -2m -m -2m -3m -4m -3m -2m -3m -4m 

 
21 22 23 24 25 26 27 28 29 30 
C G G G T A A A A T 
G G G G T A T C C C 
-5m -4m -3m -2m -m -2m -3m -4m -5m -6m 

 
Table 1: Two aligned DNA sequences 

 
For comparison of two protein sequences, the scores are obtained from the appropriate 
(or selected) 20 20× substitution matrix, and the random walk is less ‘regular’ than in the 
above example. Suppose the substitution matrix used allocates a score ( , )S i j  to a 
match of amino acids i and j. The null hypothesis is that the two sequences are random 
with respect to one another and under this hypothesis the mean score is 

, ( , )i j i jS i j p p∑  where ip  is the frequency of amino acid i. For the BLAST procedure 

it is necessary that this mean score be negative, and we assume it is, so that the general 
trend of the random walk (starting from the left) is downward, passing through a 
sequence of increasingly negative ladder points. The test statistic is the height maxY  of 
the largest upwards excursion following a ladder point relative the position of that 
ladder point, before the walk reaches the next ladder point.  It can be shown, using 
standard random walk theory, that if Y is the maximum height achieved by the walk 
after reaching any ladder point and before reaching the next, then  
 
Pr( ) ~ yY y Ce λ−≥  (4) 
 
where λ  is the unique positive solution of the moment generating equation  
 

( , )

,

1S i j
i j

i j

p p eλ =∑  (5) 

   
This is referred to as a ‘geometric-like’ distribution. For the simple random walk above, 
letting p (<1/2) be the probability of a positive step, we obtain [ ]log (1 )p pλ = −  and 

1C e λ−= − . The formula for C  for a given substitution matrix is more complicated (and 
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not given here). We are interested in maxY , the largest of these maximum heights. 
Unfortunately there is no limiting probability distribution for maxY , although bounds can 
be found. Next consider the number of ladder points reached by the walk before it 
finishes (after n steps have been taken where n is the length of the sequences being 
compared). The theory is complex, but for our purposes the number of ladder points can 
be taken as n A  where A is the mean number of steps taken from one ladder point to 
the next (and can be found by random walk theory or by application of Wald's identity), 
and also is taken here as given. Then it can be shown that the P-value associated with an 
observed value maxy  of maxY  is approximately  
 

( )max1 1
n AyCe λ−− −  (6) 

 
and in BLAST this is approximately 1 exp( )se−− − , where max logs y nKλ= −  and 
K Ce Aλ−= . When s  is large, P-value ~ se− . Note that if the elements in the chosen 
substitution matrix are all multiplied by some constant k , then it can be shown that the 
P-value is not altered. Hence the quantity s  is called a ‘normalized score’. The BLAST 
software also gives an ‘Expect’ value. This is the mean number of walks to reach a 
height equal to or higher than the maximum height  observed when the null hypothesis 
is true. When the P-value is small, this is close to the P-value, otherwise it is close to 

log(1− − P-value). Note that the P-values are quite sensitive to the somewhat arbitrary 
numerical values of K and λ . 
 
- 
- 
- 
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