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Summary 

Biometry is a discipline devoted to the mathematical and statistical aspects of biology. 
The benefits to mankind of biometrical developments—ranging from their applications 
in agriculture, and in animal and plant sciences, to those in medical science, and public 
health—have been enormous. 

The interface between biology and mathematics presents many challenges. Fundamental, 
and important, research problems have surfaced here. This process continues, both 
because of the explosion of biological data with the continual development of new 
technologies, and because of the development of ever more powerful computers to 
organize and analyze the plethora of data. In biology, the challenges range from data at 
the molecular level, to the biosphere. In mathematics and statistics, the challenges range 
from application of existing methodologies to the development of new ones, tailored to 
the biological application, with the aim of giving both broader and deeper insights into 
biological data and biological systems. 

1. Introduction 

Biometry is a large and complex field that arises from the application of statistics and 
mathematics to biology. All phases of research in biology, including design and data 
collection, analysis, and interpretation of results, depend on statistical principles and 
statistical methods. Discard any notion that biological statistics is all about hypothesis 
testing and p-values! The aim of a well-planned biological investigation is to gain 
insight into questions of scientific, biological interest. A well-developed 
biomathematical model that accurately describes the data aids in understanding what the 
data say, and so in making predictions and forming new questions. Unfortunately, many 
non-scientific, ad hoc, procedures are practiced under the banner “biometrics.”Two 
reasons have been given for the perpetuation of this state of affairs. Firstly, many 
biologists and medical researchers are trained without getting any real insight into the 
methods of science. Secondly, many editors trained in this manner will not accept 
papers for publication unless they follow these (often well-ingrained) ad hoc procedures. 

Underpinning many areas of biometry is the mathematics of probability. In particular, 
special stochastic models are often developed. Examples include models in genetics, in 
particular in population genetics, in epidemic theory and predator–prey interactions. The 
type of model depends on the context. Sir David Cox has drawn rough distinctions 
between purely empirical models and (at the other extreme) “toy” models; in between 
lie the intermediate and quasi-realistic models. A purely empirical model has no direct 
link with the underlying biological process or corresponding interpretation of the 
parameters. An example of an empirical model is the fitting of a curve to, for example, 
AIDS incidence data observed over time. In a “toy” model, a highly idealized 
representation is used to explore the particular circumstances under which a phenotype 
of interest could be generated from simple starting assumptions. Examples include 
biological models showing conditions for the extinction or explosion of epidemics, or 
the extinction of species by competition. An intermediate model is one in which some 
aspects of a complex biological process are represented, with the objective of obtaining 
a formulation such that the resulting parameter estimates do have a link with the 
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underlying generating process. An example is the back-calculation procedure used to 
predict HIV incidence from observed AIDS incidence, assuming a particular 
formulation for the incubation distribution. Such a model can produce a reasonable fit to 
the AIDS incidence data. A quasi-realistic model involves complex processes in 
biological systems. Such models are usually deterministic rather than having an explicit 
stochastic component. 

A natural question arises: when is the introduction of a stochastic element into a model 
likely to be crucial? For example, in epidemic models the deterministic model gives the 
corresponding stochastic means, but for small systems such a model may give a poor 
idea of the behavior of the sample paths. However, the often more biologically realistic, 
deterministic “toy” models (for which explicit solutions can often be more easily found) 
can be used with even more realistic and elaborate stochastic models in the 
interpretation of results from a complex simulation model. For example, the ratio of 
relevant response variables may be examined in comparison with those predicted by the 
“toy” model. 

For data collection and analysis, the same fundamental principles apply to experiments, 
to observational studies, and to the secondary analysis of data collected (usually) for 
another purpose (such as for a disease registry). In essence, the aim of the study is to 
provide insight by means of numbers, and it is useful to distinguish three broad 
headings: 

• Collection of data. 
• Organization of data. 
• Drawing conclusions from data. 

In all types of study, the key initial questions are: 

• What units (individuals) should be included? 
• What properties should be measured, and how? 
• What interactions should be examined? 

Essentially, in the planning stages, one needs to consider how to control the random 
error, and avoid systematic error (bias). There is an enormous literature on these issues. 
Basic principles of design need to be better understood. This is especially true in the 
laboratory sciences, where a widely-held but erroneous view is that refinement of 
laboratory technique is preferable to statistical methods for error control. A key element 
of the scientific method is replication. This needs to be better understood, and applied 
more in practice. 

Good tabular and graphical procedures are invaluable, and have become easier to 
produce with developments in computer software. Certainly graphical procedures 
should be more widely used, both for exploratory work and in presenting the 
conclusions of more elaborate analyses. Also, a current research focus is the area of 
graphical models that allow interactions between parameters to be clearly shown, and 
complex structures can now be fitted relatively easily using modern computer power. In 
statistical analyses that are heading towards the “conclusions” stage of the study, the 
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methods depend, at least in part, on an explicit probabilistic base. When choosing a 
model, the following should be considered: 

• The model should be consistent with previous related studies of the topic. 
• If possible, the model should establish a link with underlying substantive knowledge. 
• The model should be consistent with, or suggest, a process that might have generated 
the data. 
• The parameters should have clear interpretations, and the error structure should be 
such that measures of precision are meaningful. 
• The fit to the data should be adequate. 

These days there is an increasing need to relate the primary conclusions in different 
studies, including examination of the consistency of conclusions. In medical research 
this has lead to much interest in meta-analysis. Another fundamental concern for many 
scientists is the underlying “causal” process. Causality is a “slippery” notion, and a 
cautious usage is that strong evidence for causality can only come from the synthesis of 
different kinds of data. Closely related are the complex issues of generalizability and 
specificity, as well as the importance of any interaction/s that might be present, but has 
been assumed absent. 

Concerning inference, there are many different approaches, ranging from pure 
likelihood to the Fisherian approach (with its emphasis not only on likelihood but also 
sufficiency, conditionality and ancillarity), and the Neyman-Pearson approach (with 
emphasis on power), to the Bayesian approach. The use of highly sophisticated models 
in the analysis is not always necessary. Both sensible statistics and sensible biology will 
prescribe the final form of the quantitative model. The underlying assumptions of any 
model invoked in the analysis must be carefully checked; if any violations occur, the 
biological significance of the information provided by these models will be greatly 
reduced. A pointer to the need to examine assumptions will occur when the data 
disagree markedly with expectations. Moreover, the best quantitative models are useless 
anyway if they have little relevance to the biological processes they were meant to 
describe. Certainly analyses should not be an end in themselves; rather they may 
provide a springboard to as-yet unanswered questions about the biological system being 
studied. Overall, the selection of an appropriate statistical model for the analysis will be 
iterative. Both biological and statistical principles are needed to define and refine the 
quantitative models used to describe the biological processes. 

Risk assessment and management are important, and there is extensive discussion of 
these issues in respect of epidemiology, toxicology, and other topics. The role of 
judgmental probabilities in such situations is central. In general, individuals have little 
understanding of extreme probabilities, and their evaluation. Quality control and process 
improvement methods are also used in various biometric applications. For example, 
they can be used in multicenter clinical trials to provide quality medical evaluation for 
the final evaluation. 

The problems and questions faced by real-world applied biometry are widespread and 
far-reaching. How do some birds learn to navigate so well? What factors influence the 
length of time individuals spend in institutions, like hospitals or nursing homes? Can a 
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particular fish species survive being caught and returned to the ocean? Which 
histological changes predict cancer at a certain site? No essay, like this one, or set of 
theme headings, can properly capture the richness, breadth, and depth, of biometrical 
data and its analysis. 

There is no shortage of interesting new ideas and challenging problems in biometry, 
with many of these stemming from the relatively large datasets that are now 
proliferating. Collaborations between biologists and biometricians are essential in 
developing biometrical modeling methods for research in biology. In particular, many 
current and future challenges are being motivated by questions in molecular biology, 
genomics, proteomics, and molecular evolution. These will require the development of 
new techniques and theories. 

Much of the following is based on material that is given in the bibliography. This 
overview is not a comprehensive overview of biometry, but offers a broad-brush picture 
of the past, present, and future of this fundamental discipline that underpins so much 
Life Support Systems knowledge and ongoing research. 

2. History 

Since the seventeenth century, biological phenomena, like mortality and morbidity, 
have been the central concern of those who collected and analyzed statistical data. John 
Graunt (1629–1674) and William Petty (1623–1687) were two pioneers of this time. 
During this period, the mathematical theory of probability developed from interests in 
games of chance, and gambling, and major pioneers were Pierre de Fermat (1601–1665), 
Blaise Pascal (1623–1662), and Jacques Bernoulli (1654–1705). Abraham de Moivre 
(1667–1754) also was a pioneer in probability theory. He discovered the approximation 
of the binomial distribution by the normal distribution, as well as investigating mortality 
statistics. In the eighteenth and nineteenth centuries, the stimulus was astronomy: 
leading pioneers included Pierre Laplace (1749–1827), and Karl Gauss (1777–1855), 
who realized the importance of random errors in observations, and developed the 
method of least squares (that underpins regression). Another astronomer, Adolphe 
Quetelet (1796–1874), applied statistical methods to problems in biology and medicine. 
Pioneers in epidemiology also emerged. Louis René Villermé (1782–1863) correlated 
the variation in mortality he observed in data collected in Paris with variations in 
environmental factors. William Farr (1807–1883) studied the distribution and 
determinants of health disorders in English populations: his studies on mortality 
differences between different occupations helped in understanding industrial hazards. A 
major epidemiological discovery of this period was John Snow’s 1854 demonstration, 
using numerical arguments, that cholera was a water-borne disease. 

Francis Galton (1822–1911), a cousin of Charles Darwin, made a substantial input to 
the birth of biometry. Galton found Darwin’s theories on heredity inadequate. Although 
he did not deduce the principles of heredity, he did lay down some basic foundations for 
the application of statistics in the biological sciences, inspired by his interests in the 
analysis of variability, and his developments in the study of correlation and regression 
of biological measurements (like heights of fathers and their sons). The modern field of 
mathematical statistics developed out of biometrical problem-solving, and the stimulus 
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is attributed to Galton’s invention of correlation. During this period, Florence 
Nightingale (1820–1910) pioneered the compilation of relevant vital and medical 
statistics, accompanied by vivid and revealing graphic representations. 

The mathematical work of Karl Pearson (1857–1936), and his colleagues like Raphael 
Weldon (1860–1906), laid the foundations for modern biometry, and influenced many, 
including the pioneer medical statistician Major Greenwood (1880–1949). The 
dominant figure of twentieth-century biometry was Ronald A. Fisher (1890–1962), 
whose vast contributions included the development of analysis of variance, maximum 
likelihood methods, and experimental design. Problems in eugenics and in plant 
breeding motivated Fisher’s statistical work. Work after the Second World War saw a 
rise in epidemiologic studies focusing on associations between a wide variety of factors 
and disease, like smoking and lung cancer. In the US, a famous post-war 
epidemiological investigation has been the Framingham Study of heart disease (from 
1947), and an important application of biometrical principles underpinned the 1954 trial 
of the poliomyelitis vaccine. 

Many diverse problems in evolution and genetics have had a fundamental influence on 
both probability theory and statistics. Galton and Watson (1874) founded the theory of 
branching processes as a consequence of their investigations of the extinction of human 
family names. In the mid 1920s, McKendrick and Kermack developed non-linear birth 
and death processes in answering epidemic theory problems. The work by William 
Feller (1906–1970) on stochastic processes was partly motivated by population genetics 
problems. 

Counting process models have been developed for studying patterns of arrivals, and 
interactions of nerve impulses from different neurons. Markov processes have been used 
in analyzing membrane channel data, studying the kinetic behavior of ionic channels, 
and understanding DNA damage caused by ionizing radiation. 

 Stochastic differential equation models have been used for investigating the 
depolarization of the membrane potential of spatially distributed neurons. The stochastic 
nature of the measurements has resulted in new developments in stochastic integration 
and differentiation, and growth of this mathematical field has been stimulated by 
neurobiology. 

In summary, mathematical and statistical techniques have grown in importance over the 
past century, as has the way in which these methods have been used in biological 
research and practice. The “green revolution” in agriculture would have been impossible 
without these tools. Modern medicine and public health practice depend upon carefully 
designed and interpreted clinical trials, and upon massive observational datasets. 

Finally, the rapid increase in computer power in the modern era has seen development 
and implementation of new ideas that have made a huge impact on biometrical 
methodology, both for the design of data collection and for analysis. Insightful graphical 
procedures have become easier to implement too, and good analyses today are 
accompanied by relevant graphs. 
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3. Biometric Data Collection and Analysis 

3.1. Experimental Design 

Experimental design, particularly its historical application to agriculture, has been an 
important tool in the advancement of biometry. Sir R. A. Fisher, who established the 
Statistical Laboratory at Rothamsted Experimental Station in the early 1920s, published 
two articles on crop variation that led to a worldwide revolution in the technique of 
agricultural trials. This is widely acknowledged as the starting point of research on 
experimental design. 

The basic concepts to increase the accuracy of an experiment were formulated over the 
next two decades, namely: 

1.  To increase the size of the experiment. 
2.  To refine the experimental techniques as much as possible. 
3. To select and organize the experimental material to minimize experimental 
variability. 

The key elements of this last concept include the blocking of experimental units into 
groups that are as homogeneous as possible, and the use of covariates. Technically, 
improved experimental design involves development of increasingly sophisticated 
experimental layouts, along with corresponding methods of analysis. Good 
experimental design requires an understanding of the objectives, and the nature, of the 
experimental units. Randomization in the assignment of treatments to experimental 
units is fundamental to reducing possible biases from other sources of variation, that are 
either unrecognized or of no importance to the question/s under investigation. Increased 
computational power in recent times has seen the development of more complex designs, 
along with computational algorithms. As well as in crop research, experimental designs 
are used in animal research (for example, into dairy animals and pigs), and in evaluating 
drugs and other medical treatments. Classical designs for experiments include factorial 
experiments, fractional factorial designs, balanced incomplete block designs, Latin 
square designs, and Lattice designs. 

For the basic analysis of such designs, Fisher introduced what is termed the analysis of 
variance (ANOVA). This provides a worktable for evaluation of the null hypothesis of 
all levels of categories of treatment having the same effect on the (continuous) outcome 
measured. Under the assumption of normality, relevant ratios of the mean squares (sums 
of squares divided by their degrees of freedom) can be shown to follow well-known 
distributions, against which values from the relevant test of the null hypothesis can be 
evaluated. There are strong links between these models and linear regression. The 
approach is readily extendable to accommodated concomitant variables (ANCOVA: 
analysis of covariance). These days the data can be clustered, and random effects 
models, as opposed to fixed effects models, can be utilized. Robust approaches to guard 
against inappropriate assumptions have also become increasingly popular. 

Models of experimental data are often for prediction purposes: for personal ozone 
exposure assessment, for example, or for estimating seedling responses to 
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environmental effects. When making inferences over some population of conditions, it 
is important that the increased uncertainty that naturally accompanies the broader 
inference is reflected in the associated measures of confidence. Assuming, say, that a 
fixed effects model generally overstates the level of confidence in the estimates, it is 
important that the experiments have randomly sampled the reference populations of 
conditions. This can be a problem if, for example, research sites are chosen for specific 
reasons, such as convenience. Environments sampled can almost never be regarded as 
truly random, and one hopes that the environments encountered over the experiment’s 
timespan are reasonably representative. To the extent that the sample of environments is 
not representative, there will be bias in the estimates. 

Good design of experiments, and corresponding good data analysis, remain fundamental 
to good research. The number of important areas that benefit from good design are 
always growing. Today they include topics from diverse research areas: evaluations of 
chemical pollution; of effects in social experiments, such as offering economic 
incentives to see if there are effects on lengths of stay in nursing homes; of the feeding 
behavior of birds, to gain insight into their spatial association learning; and research on 
the ozone level. Often, cost considerations can be accommodated. For example, recent 
research has shown diagnostic tests for disease prevalence on pools of serum samples 
can, when properly designed, reduce cost and yet increase precision. As computer 
power has been increasing, so we can contemplate greater complexities in our modeling 
and data collection, and can better combine fragmentary data while simultaneously 
analyzing multivariate responses. 

- 
- 
- 
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