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Summary 
 
Groups are sets with one algebraic operation. Their basic properties are explained with 
many typical examples.  
 
The notion of groups with simple but very abstract form historically grew out of more 
concrete “transformations” and turns out to be extremely powerful thanks to the very 
abstractness.  
 
Results on matrices and linear algebra in Matrices, Vectors, Determinants and Linear 
Algebra will be freely used.  
 
1. Groups 
 
A group is a set G  endowed with a map ( )G G x y xy G× ∋ , ∈  called the group 
operation (alternatively, group law, or multiplication) satisfying the following 
conditions:  
 
(Associativity) ( ) ( )xy z x yz=  holds for all x y z G, , ∈ .  
 
(Existence of the unity) There exists e G∈ , called the unity, such that xe ex x= =  holds 
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for any x G∈ .  
 
(Existence of the inverse) For any x G∈  there exists 1x G− ∈ , called the inverse of x , 
such that 1 1xx x x− −= = e .  
 
When  is a finite set with  elements,  is called a finite group of order . The 
notation  is often used. Otherwise,  is called an infinite group.  

G g G g
g G=:| | G

 
2. Commutative Groups 
 
A group G  is said to be commutative (alternatively, Abelian) if the following condition 
is satisfied:  
 
(Commutativity) xy yx=  holds for all x y G, ∈ .  
 
The group operation for a commutative group G  is often denoted as an addition 

 so that the conditions are of the following form:  ( )G G x y x y G× ∋ , + ∈
 
(Associativity) ( ) ( )x y z x y z+ + = + +  holds for all x y z G, , ∈ .  
 
(Existence of the zero) There exists 0 G∈ , called the zero, such that 0 0x x x+ = + =  
holds for any x G∈ .  
 
(Existence of the minus) For any x G∈  there exists x G− ∈ , called the minus of x , 
such that .  ( ) ( ) 0x x x x+ − = − + =
 
(Commutativity) x y y x+ = +  holds for all x y G, ∈ .  
 
3. Examples 
   

 The set  of integers under the usual addition is an infinite 
commutative group.  

{ 2 1 0 1 2…= ,− ,− , , , , }…

 The subset {1  of  under the usual multiplication is a commutative group 
of order .  

1}, −
2

 The subset {1  of complex numbers under the usual multiplication 
is a commutative group of order .  

1 }i i, − , , − ⊂
4

 The subset {1  of Hamilton’s quaternions under the 
usual multiplication is a non-commutative group of order 8 , and is called the 
quaternion group.  

1 }i i j j k k, − , , − , , − , , − ⊂ H

 The sets , ,  and  of rational numbers, real numbers, complex numbers 
and Hamilton’s quaternions, respectively, are commutative groups under the 
usual addition.  

H

 The set  of nonzero rational numbers is a group under the usual 
multiplication. Similarly, , ,  are 
groups under the usual multiplication.  

{0}∗ :=
{0}∗ := {0}∗ := {0}∗ :=H H
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 Let X  be a set. Then the set Aut( )X  of one-to-one and onto maps 
~f X X: ⎯⎯→  of X  to itself is a group under the composition f f′  of 

Aut( )f f ′, ∈ X . The identity map ~id X X: ⎯⎯→  is the unity, while the inverse 
map 1f −  is the inverse of Aut( )f X∈ .  

 In the previous example, let {1 2 3 }X … n:= , , , , . Then  is 
usually called the symmetric group of degree . It has order , and 
consists of the permutations of {1

Aut({1 2 })nS …:= , , ,n
!n nS n| |=

2 }… n, , , .  
 The set  of real square invertible matrices of size n  is a group under the 

matrix multiplication, and is called the general linear group. The identity matrix 
 is the unity, while the inverse matrix 

( )nGL

nI 1A−  is the inverse of . 
Similarly,  (resp. ) is the group of rational (resp. complex) 
square invertible matrices of size .  
Note that no quaternionic analog of these groups exists.  
Note further that if , for instance, in the example above, then  is 

a subset of  consisting of those one-to-one and onto maps  
which are linear, that is, which “preserve” the vector space structure of  
consisting of the real column vectors of size .   

( )nA GL∈
( )nGL ( )nGL C

n

nX := ( )nGL

Aut( )n ~n n⎯⎯→
n

n
 
4. Subgroups 
 
A nonempty subset H G⊂  of a group  is called a subgroup of  if G G 1xy H− ∈  holds 
for all x y H, ∈ . It is easily seen that H  itself is a group under the operation induced by 
that of , since it contains the unity G e G∈ , is closed under the group operation of G  
and 1y H− ∈  holds for all . (Here is how to show these facts: There exists at least 
one 

y H∈

0x H∈  since H  is assumed to be nonempty. Hence 1
0 0e x x−=  is in H . Moreover, 

1 1y ey H− −= ∈  for any  by definition. Consequently, y H∈ 1 1( )xy x y H− −= ∈  holds for 
all x y H, ∈ .)  
 
Sometimes, the notation H G<  is used to mean that H  is a subgroup of G .  
 
The intersection H H ′∩  of subgroups H G<  and H G′ <  is a subgroup of G . One 
obviously has H H H′∩ <  as well as H H H′ ′∩ < .  
 
A subgroup  of  is said to be normal if N G 1xyx N− ∈  holds for all  and all y N∈
x G∈ . It is convenient to describe this fact as 1xNx N− =  for any x G∈ , where 

1 1{ }xNx xyx y N− −:= ∈ .  
 
It is convenient to denote  to say that  is a normal subgroup of G .  N G N
 
One obviously has  for  and N N G′∩ N G N G′ . Obviously,  and 

 hold. Moreover, 
N N N′∩

N N N′∩ ′ N H H∩  for any subgroup H G< . However, a 
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normal subgroup M  of a normal subgroup  need not be a normal subgroup of 
. Namely, 

N G
G M N G  does not imply M G .  
 
Note that subgroups of a commutative group are automatically normal. Note also that 

 and G  itself are normal subgroups of any group G .  { }e
 
Here are examples of subgroups and normal subgroups:  
 

 Any of the additive groups in the sequence  is a subgroup 
of those to the right.  

⊂ ⊂ ⊂ ⊂ H

 Any of the multiplicative groups in the sequence ∗ ∗ ∗⊂ ⊂ ⊂ H∗  is a 
subgroup of those to the right.  

 The multiplicative group {1 1}, −  is a subgroup of the multiplicative group .  ∗

 The multiplicative group {1 1 }i i, − , , −  is a subgroup of the multiplicative group 
, and contains the multiplicative group {1∗ 1}, −  above as a subgroup.  

 The quaternion group {1  is a subgroup of the multiplicative 
group , and contains the multiplicative group {1

1 }i i j j k k, − , , − , , − , , −
∗H 1 }i i, − , , −  above as a 

subgroup.  
 Subgroups of ’s are called permutation groups.  nS
 The set  of real square matrices  of size  with  is a normal 

subgroup of , called the real special linear group. The normality is an 
easy consequence of . The normal 
subgroups  and  are defined similarly.  

( )nSL A n det( ) 1=A
( )nGL

1det( ) det( )det( )det( ) det( )− = =PAP P A P A1−

( ) ( )n nSL GL ( ) ( )n nSL GL
 The set  of positive real numbers is a subgroup of the multiplicative group 

 of nonzero real numbers.  
0>

∗

 The orthogonal group  is the subgroup of  consisting of 
orthogonal matrices.  

( )O n ( )nGL

 The unitary group  is the subgroup of  consisting of unitary 
matrices. One has .  

( )U n ( )nGL
( ) ( ) ( )nO n U n GL= ∩

 A subgroup of the additive group  can be shown to be either {0  or, for each 
positive integer , the subset  

}
n

                   { } { 2 0 2n an a … n n n n:= ∈ = ,− ,− , , , , }… of the multiples of .   n
 
5. Homomorphisms 
 
A homomorphism from a group  to another group GG ′  is a map f G G′: →  such that 

( ) ( ) ( )f xy f x f y=  for all x y G, ∈ . It is easily seen that ( )f e  coincides with the unity 
, and e G′∈ ′ 1 1( ) ( )f x f x− = −  for any x G∈ .  

 
A one-to-one homomorphism is also called an injective homomorphism or an injection, 
while an onto homomorphism is called a surjective homomorphism or a surjection. An 
isomorphism is a homomorphism that is both one-to-one and onto.  
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A homomorphism of a group  to itself is called an endomorphism of G . An 
isomorphism of a group G  to itself is called an automorphism of .  

G
G

 
The image ( ) { ( ) }f G f x x G:= ∈  of a homomorphism f G G′: →  is easily seen to be a 

subgroup of G . More importantly, the kernel ′ ker( ) { ( ) }f x G f x e′:= ∈ =  is a normal 

subgroup of G , since 1 1( ) ( ) ( ) ( ) ( ) ( ) 1f yxy f y f x f y f y ef y− − e−= = =  holds for any 
ker( )x f∈  and any .  y G∈

 
Here are examples:  
 

  sending  to its determinant  is a (surjective) 
homomorphism. By definition, ke
det ( )nGL ∗: → A det( )A

r(det) ( )nSL= . Likewise, surjective 
homomorphisms det ( )nGL ∗: →  and det ( )nGL ∗: →  have respective 
kernel  and .  ( )nSL ( )nSL

 The signature homomorphism  from the symmetric group  
to the multiplicative group {1

sgn {1 1}nS: → ,− nS
1}, −  is defined as follows: Consider the 

polynomial called the difference product in  variables n 1 2 nx x … x, , ,  defined by  
 
 1 2

1

( ) (n i
i j n

)jx x … x x x
≤ < ≤

Δ , , , := − .∏  

 
For each permutation nSσ ∈ , the variables are permuted by σ  and  
  

(1) (2) ( ) ( ) 1 2( ) sgn( ) ( )i n i nx x … x … x x x … x … xσ σ σ σ σΔ , , , , , = Δ , , , , ,  
 
with sgn( ) 1σ = ± . The kernel  is called the alternating group of degree 

.  
ker(sgn)nA :=

n
• The map  sending 0

∗
>| |: → z ∗∈  to its absolute value  is a 

homomorphism. Its kernel is the set  
z| |

 
 (1) {exp( ) cos sin }U i iθ θ θ θ:= = + ∈  
 
of complex numbers with absolute value 1.  
• The kernel  of  is called the group of rotations. 
Obviously, 

( )SO n det ( ) { 1}O n: → ±
( ) ( ) ( )nSO n O n SL= ∩ .  

• The kernel  of de  is called the special unitary group. 
Obviously, 

( )SU n t ( ) (1)U n U: →
( ) ( ) ( )nSU n U n SL= ∩  as well as ( ) ( ) ( )nSO n SU n GL= ∩ .  

• For any element a  of a group , a map G aI G G: →  is defined to be the one 
sending x G∈  to 1( )aI x a:= xa− . It is an automorphism of  since G 1( ) ( )aI xy a xy a−=  

 1 1( )( )axa aya− −= ( ) ( )a aI x I y=  with 1a
I −  as the inverse map. aI  is called an inner 
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automorphism of . Note that G ab a bI I I= , since 
1 1 1( ) ( ) ( ) ( ) ( ( )) ( )( )ab a b a bI x ab x ab a bxb a I I x I I x− − −= = = = .   

 
6. Quotient Groups 
 
For a subgroup H  of a group  and G x G∈ , the subset { }xH xy y H:= ∈ G of  is 
called the left coset of x G∈  with respect to H . One calls x  a representative of the 
coset xH . Note that elements of the form 0xy  for 0y H∈  are representatives of the 
coset xH  as well. Likewise, {Hx yx y H:= ∈ } is called the right coset of x G∈  with 
respect to H , while x  is called a representative of the coset. Elements of the form 0y x  
are representatives of Hx  as well. (In the case of additive groups, the notation 

{ }x H x y y H+ := + ∈  is used.)  
 
The set G H/  of all the left cosets xH  in G  with respect to H  is called the left coset 
space of  with respect to a subgroup G H . Likewise, the set H \G  is the set of all the 
right cosets Hx  in G  with respect to H  and is called the right coset space of  with 
respect to a subgroup 

G
H . The left coset space and the right coset space are also called 

homogeneous spaces of G  with respect to a subgroup H .  
 
[G H: ]  is defined to be the number of cosets in G  with respect to H , and is called the 
index of H  in . It does not matter whether the left cosets or the right cosets are 

counted. Indeed, the one-to-one and onto set map 

G
~G G⎯⎯→  sending x G∈  to 1x G− ∈  

maps each left coset xH  to the right coset 1Hx−  inducing a one-to-one and onto set 

map .  ~G H H \ G/ ⎯⎯→
 
When  is a finite group, the formula  G
 

[ ]G G H H| |= : | |  
 
due to Lagrange turns out to be very useful, where G| |  and H| |  are the orders of the 
groups  and G H , respectively.  
 
Of special interest are the coset spaces with respect to normal subgroups. For a normal 
subgroup  of a group G , the left coset and the right coset of any N G x G∈  coincide 
so that xN Nx=  by the definition of normality. Moreover, the coset space G N/  turns 
out to be a group, called the quotient group with respect to  under the following 
group law: The product of cosets 

N
xN  and x N′  is defined to be  

 
( )( )xN x N xx N′ ′:= ,  
 
which is well-defined independently of the choice of representatives. Indeed, let xy  and 
x y′ ′  with  be other representatives. Then y y N′, ∈
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1( )( ) (( ) )xy x y N xx x yx y N xx N−′ ′ ′ ′ ′ ′ ′= = , since 1( )x yx N−′ ′∈  by normality. The coset 
 is the unity of G NeN N= / , while 1x N−  is easily seen to be the inverse of xN .  

 
The map G G Nπ : → /  sending x G∈  to ( )x xNπ :=  is called the projection, and is 
easily seen to be an onto homomorphism with kernel ker( ) Nπ = .  
 
The quotient groups produce interesting new groups.  
 
7. Homomorphism and Isomorphism Theorems 
 
A homomorphism of groups f G G′: →  induces an isomorphism  
 

~ker( ) ( )f G f f G: / ⎯⎯→ ,  
 
which is known as the homomorphism theorem.  
 
For normal subgroups  and N N′  of a group G  with N N ′⊂ , one has a natural 
surjective homomorphism f G N G N ′: / → /  sending xN  to xN ′ . Its kernel is 
ker( )f N N′= / , so that by the above theorem the so-called first isomorphism theorem  
 

~( ) ( )G N N N G N′ ′/ / / ⎯⎯→ /  
 
holds. Any subgroup of G N/  is of the form H N/  for a subgroup H  of G  containing 

. Moreover, N H N/  is normal in G N/  if and only if H  is normal in .  G
 
In general, let H  be a subgroup of a group  and  a normal subgroup of G . Then 
the set 

G N
{HN hn h H n N:= ∈ , ∈ } is easily seen to be a subgroup of G  containing  as 

a normal subgroup. (In the case of additive groups, the notation 
N

{ }H N h n h H n N+ := + ∈ , ∈  is used.)  
 
The projection G G Nπ : → /  induces a homomorphism H H G Nπ| : → /  by restriction. 
Its kernel is ker( )H H Nπ| = ∩ , while its image is the quotient group HN N/ . Thus the 
so-called second isomorphism theorem  
 

~( )H H N HN N/ ∩ ⎯⎯→ /  
 
holds. These simple innocuous looking theorems turn out to be extremely useful as 
shown later.  
 
• The map  sending (1)f U: → θ ∈  to ( ) exp(2 ) (1)f i Uθ π θ:= ∈  is a 
surjective homomorphism with kernel ker( )f = . Thus an isomorphism  
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  ~ (1)U/ ⎯⎯→ .
 
• It was seen earlier that the subgroups of the additive group  are {0  and  
for positive integers . For positive integers  and m , one has  if and only if 

 divides . Denote by gcd(  and 

} n
n n n m⊂

m n )m n, lcm( )m n,  the greatest common divisor and the 
least common multiple of m  and n , respectively. Then  
 
  lcm( ) and gcd( )m n m n m n m n∩ = , + = , .
 
The well-known formula  
  
lcm( ) gcd( )m n m n mn, , =  
 
is the second isomorphism theorem in disguise.  
 
• The subgroups of n/  for a positive integer n  are m n/  for the divisors  
of n .   

m

 
8. Cyclic Groups 
 
Let x  be an element of a group G . Then a homomorphism xf G: →  is defined to be 
the map sending m∈  to  
 

1 1 1

( times) if 0
( ) if 0

( times) if 0

m
x

xx x m m
f m x e m

x x x m m− − −

>⎧
⎪:= := = .⎨
⎪ − <⎩

 

 
Its kernel could be either {0  or  for a positive integer  as was seen before. Its 
image is denoted by 

} n n
( )xf x=:  and is called the subgroup of G  generated by x .  

 
x G∈  is said to be of infinite order if ker( ) {0}xf = . In this case, the image x  of xf  

consists of mutually distinct mx ’s for all m∈  and one has an isomorphism  
 

2 1 2{ }x … x x e x x …− −⎯⎯→ = , , , , , ,∼ .  
 
Any of these isomorphic groups is called an infinite cyclic group.  
 
• x G∈  is said to be of order  if n ker( )xf n=  for a positive integer . In this 
case, the image consists of  distinct elements and one has an isomorphism  

n
n

 

 2 1~ { }nn x e x x … x −/ ⎯⎯→ = , , , , .  
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