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Summary 
 
The main objective of Complex Analytic Geometry is to study the structure of complex 
manifolds and analytic varieties (the sets of common zeros of holomorphic functions). It 
is deeply related to various fundamental areas of mathematics, such as complex 
analysis, algebraic topology, commutative algebra, algebraic geometry, differential 
geometry and singularity theory, and there are very rich interplays among them. The 
Riemann-Roch theorem, for instance, is an outcome of such interaction. The subject is 
also related to many other branches of sciences including mathematical physics and 
learning theory. 
 
1. Analytic Functions of One Complex Variable 
 
Let U  be an open set in the complex plane ^  and f  a complex valued function on U . 
The differentiability of f  at a point a  in U  is defined as in the case of functions of a 
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real variable. Thus we say that f  is differentiable at a  if the limit 
 

( )
0

( )
lim
h

f a h f a
h→

+ −
 

 
exists. If f  is differentiable at every point of U , we say that f  is holomorphic in U . 
The above limit is denoted by ( )df

dz a  and is called the derivative of f  at a . If f  is 
holomorphic in U , then we may think of df

dz  as a function on U .  
 
We say that f  is analytic at a point a  in U  if it can be expressed as a power series  
 

( )
0

( )n
n

n

f z c z a
∞

=

= − ,∑  

 
which converges at each point z  in a neighborhood of a . We say that f  is analytic in 
U  if it is analytic at every point of U .  
 
If f  is analytic in U , it is holomorphic inU . A striking fact about functions of a 
complex variable is that the converse is also true, i.e., if f  is holomorphic in U , it is 
analytic in U .  
 
There is another important way of expressing this property. Let 1z x y= + −  with x  
and y  the real and imaginary parts, respectively. We may think of f  as a function of 
( )x y, . We write 1f u v= + −  with u  and v  the real and imaginary parts. In general, 
we say that a function of real variables is (of class) rC , if the partial derivatives exist up 
to order r  and are continuous. If all the partial derivatives exist we say it is C∞ . Then 
f  is holomorphic in U  if and only if f  is 1C  in ( )x y,  and satisfies the “Cauchy-

Riemann equations" in U ;  
 

u v u v
x y y x
∂ ∂ ∂ ∂

= , = − .
∂ ∂ ∂ ∂

 

 
We finish this section by recalling the Cauchy integral formula. Let f  be an analytic 
function in a neighborhood of a  and γ  the boundary of a small disk about a , oriented 
counterclockwise. Then we have  
 

( )1 ( )
2 1

f z dz f a
z aγπ

= .
−− ∫  

 
2. Analytic Functions of Several Complex Variables 
 
Let { }1( )n

n iz z … z z= = , , ∈^ ^  be the product of n  copies of ^ . For an n -tuple 
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1( )n…ν ν ν= , ,  of non-negative integers, we set 1
1 1,n

n nz z zννν ν ν ν= = + +… …  and 

1! ! !nν ν ν= … . 
 
Let U  be an open set in n^  and f  a complex valued function on U . We say that f  is 
analytic at a point a  in U , if it can be expressed as a power series  
 

1

1

1

1 1
0 0

( ) ( ) ( ) ( ) n

n

n

… n n
…

f z c z a c z a z a ννν
ν ν ν

ν ν ν| |≥ , , ≥

= − = − − ,∑ ∑ …  

 
which converges absolutely at each point z  in a neighborhood of a . We say that f  is 
analytic in U  if it is analytic at every point of U . A theorem of Hartogs says that f  is 
analytic in U  if and only if f  is analytic in each variable iz  in U , for 1, ,i n= … .  
 
In the sequel, we call analytic function also a holomorphic function and use the words 
“analytic" and “holomorphic" interchangeably. If f  is holomorphic, for arbitrary ν , the 
partial derivative  
 

1
1

n
n

f f
z z z

ν ν

ν νν

| |∂ ∂
=

∂ ∂ ∂…
 

 
exists and is holomorphic in U . If ( ) ( )f z c z a ν

ν= −∑  is a power series expansion of 
f , then each coefficient cν  is given by  

 
1 ( )fc a

z

ν

ν νν
∂

= .
! ∂

 

 
This series is called the Taylor series of f  at a .  
 
Let U  be an open set in n^  and : mf U →^  a map. We say that f  is holomorphic if, 
when we write f  componentwise as ( )1 , , mf f f= … , each if  is holomorphic. Let U  

and U ′  be two open sets in n^  and :f U U ′→  a map. We say that f  is 
biholomorphic, if f  is bijective and if both f  and 1f −  are holomorphic. For a 
holomorphic map ( )1 , , mf f f= …  from an open set U  in n^  into n^ , we set  
 

1 1

1
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1

1
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f f
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and call it the Jacobian matrix of f  with respect to z .  
 
We say that a point a  in U  is a regular point of f , if the rank of the Jacobian matrix 
evaluated at a  is maximal possible, i.e., ( )min ,n m . Otherwise we say that a  is a 
critical (or singular) point of f .  
 
As in the case of functions or mappings of real variables, we have the inverse mapping 
theorem and the implicit function theorem, which are basic in analyzing a mapping at its 
regular point. 
 
3. Germs of Holomorphic Functions 
 
Let H  be the set of functions holomorphic in some neighborhood of 0  in n^ . We 
define a relation ∼  in H  as follows. For two elements f  and g  in H , ~f g  if they 
coincide on a neighborhood of 0 . Then the relation ~  is an equivalence relation in H . 
The equivalence class of a function f  is called the germ of f  at 0 , which we also 
denote by f  for simplicity. We let nO  be the quotient set of H  by this equivalence 
relation. The set nO  has the structure of a commutative ring with respect to the 
operations induced from the addition and the multiplication of functions. It has the unity 
which is the equivalence class of the function constantly equal to 1.  
 
If we denote by { }1, , nz z^ …  the set of power series which converge absolutely in some 
neighborhood of 0 , this set also has the structure of a ring. Since ~f g  if and only if 
f  and g  have the same power series expansion, we may identify nO  with 

{ }1, , nz z^ … . 
 
The ring nO  is an integral domain, i.e., if 0f g = , for ,f g  in nO , then 0f =  or 

0g = . We say that a germ u  in nO  is a unit if there is a germ v  such that 1uv = , it is 
equivalent to saying that it is the germ of a function u  with ( )0 0u ≠ . 
 
The following two theorems of Weierstrass are fundamental in the analysis of the 
structure of the ring nO . First, for a germ 0f ≠  in nO , we write 

0
f a zννν ≥
= ∑ . We 

say that the order of f  is k , if 0aν =  for all ν  with kν <  and 
0

0aν ≠  for some 0ν  

with 0 kν = . We say that the order of f  in nz  is k , if the order of ( )0, ,0, nf z… , as a 
power series in nz , is k .  
 
We consider the ring [ ]1n nz−O  of polynomials in nz  with coefficients in 1n−O :  
 

{ }1 0 1 1[ ] ( ) k
n n n k n i nz f z a a z … a z a− −= = + + + ∈ .O O  
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A Weierstrass polynomial in nz  of degree k  is an element h  of [ ]1n nz−O  of the form  
 

1
0 1 1

k k
n k n nh a a z … a z z−

−= + + + + ,  
 
where k  is a positive integer and 0 1 1, , , ka a a −…  are non-units in 1n−O . 
 
Note that in the above, ( )0, ,0, k

n nh z z=… . Hence the order of h  in nz  is k . In general, 
any germ f  in nO  is written as  
 

0 1( ) k
n k nf z a a z … a z= + + + +"  

 
with ia  in 1n−O . The order of f  in nz  is k  if and only if 0 1 1, , , ka a a −…  are non-units in 

1n−O  and ka  is a unit in 1n−O . In this case, ( )1
0 1

k
k n k na a a z a z− + + +…  is a Weierstrass 

polynomial in nz  of degree k . The Weierstrass preparation theorem stated below says 
that such an f  is essentially equal to a Weierstrass polynomial of degree k . 
 
Weierstrass division theorem 
 
If h  is a Weierstrass polynomial in nz  of degree k , then for any germ f  in nO , there 
exist uniquely determined elements q  in nO  and r  in [ ]1n nz−O  with deg r k<  such 
that  
 
f qh r= + .  

 
Weierstrass preparation theorem  
 
Let f  be a germ in nO  whose order in nz  is k . Then there is a unique Weierstrass 
polynomial h  in nz  of degree k  such that f uh=  with u  a unit in nO .  
 
Next we discuss some important properties of the ring nO  which follow from the above 
theorems. We say that a germ f  in nO  is irreducible if f  is not a unit and if the 
identity f gh=  for germs g  and h  implies that either g  or h  is a unit. The ring nO  is 
a unique factorization domain, i.e., every germ f  that is not 0  or a unit can be 
expressed as a product of irreducible germs and the expression is unique up to the order 
and multiplications by units. For germs f  and g , there is always the greatest common 
divisor ( )gcd ,f g , which is unique up to multiplication by units. We say that f  and g  

are relatively prime if ( )gcd ,f g  is a unit.  
 
Another important property of the ring nO  is that it is Noetherian, i.e., every ideal in nO  
has a finite number of generators. 
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