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Summary 
 
Complex analysis means the theory of differential and integral calculus for complex 
valued functions of complex variables. Sometimes “theory of (complex) function” is 
used in the same meaning. Here “complex” means the complex numbers described 
below. 

 
1. Complex Numbers 
 
A complex number is an expression of the form a ib+  with two real numbers a , b  
and i  is the imaginary unit: 1i = − . 
The set of all complex numbers C forms a field, i.e. an algebraic system admitting four 
arithmetic operations as usual, except division by 0. The arithmetic operations for 
complex numbers may be performed as a polynomial of i , provided that 2i  is 
replaced by –1. 
For example, division can be carried out by the formula 
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The complex number a ib+  is represented by a point with the coordinates ( ),a b  
over a plane. The plane on which complex numbers are represented is called the 
complex plane or the Gauss-Argand plane (See Figure 1)  
 

 
 

Figure 1: Gauss-Argand plane 
 
A complex variable is usually denoted by iyxz += , where x  and y  are real 
variables, called the real part and the imaginary part of z  respectively. When we 
take the polar coordinates on the complex plane the magnitude or the radius is denoted 
by  
 

2 2a a ib a b= + = +  
 
and is called the absolute value of a ibα = + . The argument is denoted by arg α . A 
complex number α  with 1α =  is expressed as  

cos sin , argiα θ θ θ α= + = . 
 
The above expression is usually written as )exp( θi  or θie . Sometimes an abbreviated 
notation ( )cos θ  is used. According to the addition theorem we have  

)exp()exp())(exp( φθφθ iii ⋅=+ , )exp())(exp( θθ ini n = . These relations are called de 
Moivre theorem. 
In some cases, we use the following compactification. Let Σ be a sphere in 
( ), ,ξ η ζ -space of radius 1 with the center at the origin. Let its equatorial plane 0ζ =  
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be a complex plane C, whose real and the imaginary axes are the ξ  and η  axes 
respectively. A complex number iyxz +=  is represented by a point Z on C. A straight 
line from the north pole N(0, 0, 1) to Z intersect Σ at another point ( ), ,P ξ η ζ . The 
mapping Z→P is called a stereographic projection and is given by the following 
relations.  
 

ζ

2

2 2 2
2 2 | | 1; , ,

1 1 | | 1 | | | | 1
i x y zz

z z z
ξ η ξ η ζ+ −

= = = =
− + + +

. 

 
There is no point on C corresponding to the north pole N itself, but we add a new 
element denoted by ∞, called the point at infinity, which is assumed to be the image of 
N. Then Σ corresponds to { }∪ ∞C = C  and is called the complex sphere or Riemann 
sphere (see Figure 2). When we discuss a function near ∞, we take usually the local 
variable zw /1=  around ∞. 
 

 
 

Figure 2: Complex sphere or Riemann sphere 
 
2. Holomorphic Functions 
 
Let )(zf  be a complex valued function defined in an open set D on the complex plane 
C. )(zf  is called differentiable at z , if the limit 
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exists and is finite as the complex increment h  tends to 0. )(zf ′ is called the 
derivative of )(zf  in D. Though the formal definition is similar to a function of a real 
variable, it is much stronger than the case of real functions, since hz +  may be an 
arbitrary point in a 2-dimensional neighborhood of z . In particular, if 0)( ≠′ zf , we 
have 
 

( ) ( ) :
( ) ( )

f z h f z h
f z k f z k

+ −
+ −

 

 
for two neighboring points hz +  and kz +  near z . This relation implies that the 
image under f  of the triangle with vertices at z , hz +  and kz +  is approximately 
similar to the original one, i.e., f  is conformal or angle-preserving mapping. 
 
A function )(zf  differentiable at each point of an open set D is called holomorphic or 
regular in D. 
 
Almost all orthogonal curvilinear coordinates on a plane are given from the Cartesian or 
the polar coordinates on the plane by conformal mappings of various holomorphic 
functions. For example, the function 2zw =  maps the lines ax =  and by =  
( ); ,z x iy a b= + ; being real constants) to a parabola open to the right and to the left, 
respectively. The symmetric axis of the parabola is the real axis and the focus lies at the 
origin (see Figure 3). This gives the parabolic coordinates. 
 

 
 

Figure 3: Parabolic coordinates 
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Another example is the function ⎟
⎠
⎞

⎜
⎝
⎛ +=

z
zw 1

2
1 . This maps a circle rz =||  and a ray 

 arg z θ=  to an ellipse and a hyperbola, respectively. Their foci are at +1 and –1. 
 
This gives rise to the elliptic coordinates (see Figure 4). 
 

 
 

Figure 4: Elliptic coordinates 
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