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Summary 
 
The Riemann integral confronts several inconveniencies, for example, the interchange 
of the limiting procedure and the integration sign, and the integral of singular functions. 
The Lebesgue integral overcomes these difficulties. The Lebesgue integral is extended 
on abstract spaces and provides a sound and powerful tool for probability theory. 
Probability theory is an integrated system associated with several uncertain 
phenomenological events. Markov processes and stationary processes are well 
established fields of probability theory. Stochastic dynamical theory finds many useful 
applications. 
 
1. Introduction 
 
Measure is a generalized notion such as length, area and volume. Let ( , ]I a b=  be the 
set of real numbers x  satisfying a b< ≤x . It is called a left open right closed interval. 
The length of I  is defined to be ( b  – a ).  Also the length of intervals [ , ), ( , )a b a b , and 
[ , ]a b  is given by ( )b a− . If ( , ]i i iI a b=  ( 1, 2,...., )i = n are disjoint intervals in the sense 

that i jI I∩ =Øwhenever i j≠ , then the length of the set 1i iI=
n∪  is defined 

by 1( )i ii b a= −∑n . By such procedure, one can define the length of a set which is the 
union of finite intervals. The extension of the notion of length for very general subsets 
of the real line has been achieved by Émile Borel and Henri Lebesgue around 1900. 
 
Measures are defined on a σ -algebra which is a family of subsets of an abstract set, 
closed under complementation and countable union. A measure is a countably additive 
non-negative set function on the σ -algebra. An integral with respect to a measure has a 
notable property: passage to the limit can be performed under the integral sign. Also a 
product of two different measures is defined and an interchange of integrations with 
respect to the two measures is allowed under mild conditions. A relation exists between 
two different measures: absolute continuity and singularity. A measure is introduced on 
locally compact topological group which is called a Haar measure. 
 
Theory of probability is concerned with the analysis of mathematical models which 
arise in the description of random phenomena, such as random coin tossing, the random 
movement of particles and so on. Despite its simple structure, one can find diverse 
applications in physics, biology, engineering, finance and so on. In order to build 
stochastic models, we are required to construct a probability space. A mathematically 
sound formalism for this purpose is founded by Kolmogorov (1933). A probability is 
nothing but a measure with a mass of 1. However, it becomes necessary to consider a 
family of measures, finite or countable or even uncountable. First, important concepts 
are independence and dependence which determine the relations of the family of 
probability measures. There are several mode of dependence, Markov property, 
Martingale, Stationarity, etc. Law of large numbers and central limit theorem are central 
topics in probability theory which showed up in a very great number of quite different 
situations. The study of sums of independent random variables is accomplished by 
Kolmogorov, Lévy, and Khintchine and summarized in the book of Gnedenko-
Kolmogorov (1949). Lévy (1937) initiated the study of martingale and Ville (1939) 
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used the word martingale for a sequence of random variables. Doob (1940) established a 
rigorous and deep theory of martingale. Analytical study of Markov processes was first 
conducted systematically by Kolmogorov (1931) who established that the transition 
probability satisfies partial differential equations of parabolic type. Feller (1936, 1952, 
1954, 1957) developed such analytical study. Itô showed that Markov processes could 
be obtained constructively by solving stochastic differential equations and established 
the theory of stochastic integration. Doob (1953) recognized that stochastic integrals are 
martingales. Kunita and Watanabe (1967) pushed such ideas further. However, some of 
their results were contained implicitly in the work of Itô (1951) on multiple Wiener 
integral. The most important process is the Brownian motion. Brownian movement is 
the name given to the irregular movement of pollen suspended in water, observed by the 
botanist Robert Brown in 1828. Bachelier (1900) wrote a paper “Théorie de la 
spéculation” in which he proposed the Brownian motion and considered it as the price 
of stock. Einstein also proposed another formulation. A mathematically rigorous model 
was established by Wiener (1923). Precise properties of sample functions of the 
Brownian motion were studied by Kakutani, Erdös, Chung, Sirao, Taylor and others 
 
There is another interpretation of Itô processes. They can be considered as dynamical 
systems perturbed by noises. Such a point of view makes them applicable to stochastic 
control theory, stochastic finance, stochastic quantum field theory (Euclidean quantum 
field theory by E. Nelson), stochastic Navier-Stokes equation, and stochastic KDV 
equation. To discuss Itô stochastic differential equations in such a variety of situations, 
it becomes necessary to establish infinite-dimensional stochastic analysis on Banach 
spaces. These are the future directions to be developed. 
 
In stationary processes, the main topic is the ergodic theorem. It originates from 
 “ergodic hypotheses” introduced by L. Boltzmann (1887) and related statistical 
mechanics. On the mathematical side, there are contributions by Birkhoff (1932), E. 
Hopf (1937), Yoshida-Kakutani (1939) etc. Markov chain is initiated by Markov (1906) 
and developed by Hostinsky, Fréchet, Romanovski, Feller, Kolmogorov, Kakutani, 
Doob and others. Markov chains can be found in all applied fields, physics, chemistry, 
population genetics, queuing theory etc. 
 
2. Measure 
 
2.1. Fields of Sets 
 
To state results it is convenient to introduce several definitions. Let. Ω  be a set and C  
be a collection of subsets of Ω  with the empty set CØ∈ . C  is called an algebra ( or 
field) if ,A B C∈  implies that cA  and A B∪  are in C . Then, since ( )c c cA A B=∩Β ∩ , 
it follows that A B C∩ ∈ . An algebra F  is called a σ -algebra if for any sequence An  
of sets in F  their intersection 1 A≥∩ nn  is in F . If R=Ω  (1-dimensional Euclidean 

space) and C  = the collection of sets of the form 1( , ]i ii a b=∪
n  where i ia b− ≤ < ≤∞ ∞ , 

then C  is an algebra. 
 
2.2. Lebesgue Measure 
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A function μ  from C  into [0, ]∞  is said to be finitely additive if and only if (iff) 

( ) 0=μ Ø  and 11( ) ( )i iii A A== = ∑∪n nμ μ  whenever iA  are disjoint, iA C∈  for 

1,2,....,i = n  and 1 ii A=∪ Cn ∈ . When C  consists of all finite unions of intervals, the 
length of a set in C  satisfies this requirement. The measure of a countable union of non-
overlapping intervals is defined as the sum of their lengths, finite or not. The measures 
of a single point and any countable family of points are zero. This definition of measure 
can be extended to the class of Borel measurable sets. This is the smallest collection of 
subsets of R  which contains all subintervals of R  and is closed under countable union, 
countable intersection and complementation. Furthermore, the measure of a countable 
union of disjoint Borel measurable sets is the sum of their individual measures. This 
extension of measure to Borel measurable sets is uniquely done. Finally, the class of 
Lebesgue measurable sets consists of all sets obtained as the countable union of Borel 
measurable sets and any subsets of a Borel measurable set of measure 0, where the 
measures of the latter sets are defined as 0. The Lebesgue measure can be defined as 
follows; for any measurable set E , 
 

( ) ( )
1

infE I
∞

=
= ∑ n

n
μ μ . 

Where infimum is taken over the class of countable coverings of E  by intervals In  

such that I∞∪ nn=1  E⊃ .  There exist uncountable measurable sets with measure 0. Let 
 

1 2( , )
3 3

G =  

1 2 7 8( , ) , )
9 9 9 9

∪ ∪(  

1 2 7 8 19 20 25 26( , ) ( , ) ( , ) ( , )...
27 27 27 27 27 27 27 27

∪ ∪ ∪ ∪  

 

Then, the measure of G  is equal to 1 11 2
1 3 32 3 (1 ) 1

−∞ − −
= = − =∑

nn
n . Therefore, the 

measure of the set [0,1] cC G= ∩  is 0. The set C  is called Cantor set. 
 
The Lebesgue measure is a function l  of Lebesgue measurable sets with values in 
[0, ]∞  and has the following useful properties. 1 2, , ,....A B B  are Lebesgue measurable 
sets; 
 
(1.a)  0 ( )l≤ A  
(1.b) ( ) ( )l l≤A B  if A B⊂ . 

(1.c) 11( ) ( )l B l∞ ∞
== ≤ ∑∪ n nnn B . 

(1.d) 11( ) ( )l B l∞ ∞
== = ∑∪ n nnn B  if i jB B∩  is empty for i j≠ . 

(1.e) ( ) ( )l l↑nB A  if 1 2 ....B B⊂ ⊂  and 1 B∞
= =∪ nn A . 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. II - Measure and Probability - H. Watanabe 

©Encyclopedia of Life Support Systems (EOLSS) 

(1.f)  ( ) ( )l l↓nB A  if 1 2 1....,B B∞
= =∩ nB A⊃ ⊃  and 1( )l < ∞B . 

(1.g) ( ) ( )l l= +A x A , where { };A A+ = +x x y y ∈ . 
 
Let A  be an algebra. If μ  is a measure on A , μ  can be extended uniquely to the σ -
algebra ( )F A  generated by A . 
 
2.3. Measures 
 
In general setting, Ω  can be an abstract space. In analysis and probability theory, the 
measure works mostly on the complete, separable metric space. The domain of the 
measure is the smallest σ -algebra containing all open sets in the metric topology. Its 
member is called Borel set. It is called a topological σ -algebra and will be denoted by 
B . The measure is a function μ  of the Borel sets with the properties (1.a) ∼  (1.f). A 
measure space ( , , )F μΩ  is said to be complete if F  contains all subsets of any set of 
measure 0. If ( ) < ∞μ Ω , then for any Borel set A , 
 

[ ]( ) sup ( ); compact ,K K K K= BA Aμ μ ⊂ ∈  
 
holds. A measure with such a property is called regular. Also it is tight, namely for 
any 0>ε , there is a compact set Kε  such that ( )cK <μ ε ε . Every finite measure on a 
complete separable metric space is tight and regular. 
 
A measure μ  will be called a σ -finite measure on ( )FΩ, .If there is a sequence of sets 

A Fn ∈  such that ( ) < ∞nAμ  and A∞ =∪ nn=1 Ω . 
 
Assuming the axiom of choice (also known as Zermelo’s axiom), the existence of non-
measurable sets can be proved. On the other hand, the existence of a non-Lebesgue 
measurable set cannot be proved in Zermelo-Frankel set theory if the use of the axiom 
of choice is forbidden. 
 
2.4. Measurable Functions 
 
A real function f  on R  is said to be measurable if for every a  and b , the set 
{ ; ( ) }a f b≤ <x x  is a measurable set. In general setting, let ( , ), 1,2i i i =BΩ  be 
measurable spaces, where iB  is a σ -algebra of subsets of iΩ . If f  is a function from 

1Ω  into 2Ω , then f  is called measurable iff 1( )f B−  1{ : ( }f= Bω ω) Β∈ ∈ for all 

2BB ∈ . 
 
The class of real measurable functions has the following properties. 
 
(2.a) If f  is measurable and c  is a scalar, then cf  is measurable. 
(2.b) If f  and g  are measurable, then ,f fg± g  and / ( 0)f ≠g g  are measurable. 
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(2.c) Let ( )fn  be a sequence of real functions. Then the functions 
sup ( ), inf ( ),f fn n n nω ω  limsup ( ), lim inf ( )nf f→∞ →∞n n nω ω  are all measurable. 
 
A function f  on Ω  is called a simple function if it is expressed as 
 

1( ) ( )
ii Aif a I== ∑nω ω ,  (1.1) 

 
where iA  are disjoint sets and ( )AI ω  denotes the indicator function of the set A , being 
1 for Aω ∈  and 0 for ∉Aω . 
 
For any measurable function 0f ≥  , let fn  be defined as follows. If 

2 ( ) ( 1)2k f k− −≤ < +n nω  for an integer k  satisfying 2 , ( ) 2k f k −< =n n
nn ω  and 

( )f =n nω  for ( )f ≥ nω . Then it follows that fn  is measurable, simple and 
0 ( ) ( )f f≤ ↑n ω ω  for allω ∈Ω . Namely, any measurable function can be approximated 
by simple measurable functions. 
 
 
 
2.5. Integral 
 
If ( , , )F μΩ  is any measure space and f  any simple function on Ω , as in (1.1) with 

0ia ≥  for all i , then, the integral of f  with respect to μ  is defined by 
 

[ ]( ) 0, (0i i ia μ ∞ ⋅∞∑ A ∈  is taken to be 0). 
 
which is denoted by f d∫ μ  or ( ) ( )f d∫ ω μ ωΩ . The integral of 0f ≥  is defined by the 

limit of the integral of simple functions fn  above as →n ∞ , 
 

2
1 2 ( : 2 ( ) ( 1)2 ) ( : ( ) )kf d k k f k f fd
− − − −

== ≤ < + + × ≥ ↑∑∫ ∫
nn n n n

n n nμ μ ω ω μ ω ω μ  
 
A measurable function f  is integrable if f d <∫ μ ∞ . 
 
Let ( ) ( ) 0f f+ = ∨ω ω  and ( ) ( ( )) 0,f f− = − ∨ω ω  
 
where max( , )a b a b∨ = . 
 
Then the integral of f  is defined by 
 

fd f d f d+ −= −∫ ∫ ∫μ μ μ  
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It is said to be summable if the integral of f +  or f −  is finite. 
 
f ≤ g  ∼μ  almost everywhere (a.e.) ( a.e.∼μ ) means that f ≤ g  holds outside of a μ -

negligible set (i.e. a set of  μ -measure 0), namely ({ : ( ) ( )} 0f ≥ =gμ ω ω ω . 
 
The most important properties of the integral are listed below. 
 
(3.a) If 0 a.e.,≥ ∼f μ  then ≥∫ fd 0μ  
(3.b) If f  is integrable and a  is real , then a=∫ ∫afd fdμ μ . 
(3.c) If f  and g  are integrable, then ( )+ = +∫ ∫ ∫f g d fd gdμ μ μ  
(3.d) If f  and g  are integrable such that a.e.,≥ ∼f g μ  then ≥∫ ∫fd gdμ μ . 
(3.e) If  ,f g  are integrable and a.e.,= ∼f g μ  then =∫ ∫fd gdμ μ . 
(3.f) If f  is summable, then ≤∫ ∫fd f dμ μ  
(3.g) (Bounded convergence theorem) Let E  be a set with ( )E < ∞μ . If fn  vanishes on 

cE , M≤nf , and a.e.,→ ∼nf f μ  then 
 

lim
→∞

=∫ ∫ n
n

fd f dμ μ  

  
(3.h) (Fatou’s lemma) If 0,≥nf , then  
 
liminf (lim inf ) .

n
f

→∞ →∞
≥∫ ∫n n

n
f d dμ μ  

 
(3.i) (Monotone convergence theorem) 
 
If 0≥nf  and ↑nf f , then ↑∫ ∫nf d fdμ μ . 
 
(3.j) (Dominated convergence theorem) If . .,a e→ ≤n nf f f g  for all n  and g  is 
integrable, then →∫ ∫nf d fdμ μ  
 
Even if →nf f , the convergence of the integral →∫ ∫nf d fdμ μ  is not guaranteed in 
general. (3.g), (3.j) give very useful sufficient simple conditions for the convergence. 
The inequality (3.h) which holds for any positive functions is also useful in more 
sophisticated proof of convergence in some cases. 
 
2.6. Product Measures 
 
If ( , , ), 1, 2,....,i i i i =F nμΩ  are σ -finite measure spaces, and  
 

1 2 1 2..... {( , ,...., ) : , 1, 2,..., }i i i= × × = =n n nω ω ω ωΩ Ω Ω Ω ∈Ω , there is a unique measure μ  
on the σ -algebra F  generated by sets of the form 1 2 .... , i i× × × FnA A A A ∈ , satisfying 
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the product formula. 
 

( ) ( )1
1

.... i i
i=

× × =∏
n

nA A Aμ μ  

 
(3.k) (Fubini’s theorem) if 0f ≥  or f < ∞∫ dμ , then 
 

( )
1 2 1 21 2 2 2 1 1( , ) ( ) ( )f f×=∫ ∫ ∫d d dω ω μ ω μ ω μΩ Ω Ω Ω  

 

( )
1 1 2 1 1 2 22 ( , ) ( ) ( )f= ∫ ∫ d dω ω μ ω μ ωΩ Ω  

 
The change of the order of integration, guaranteed by this formula under the simple 
condition of either the positivity or the integrability, is often useful in a concrete 
computation of integrals. 
 
2.7. Relations between two Measures 
 
Let v  and μ  be two measures on the same measurable space ( , )FΩ . The measure v  is 
said to be absolutely continuous with respect to the measureμ , in symbols v ≺ μ , if 

( ) 0v =A , whenever ( ) 0=Aμ . μ  and v  are singular, denoted v ⊥ μ , if there is a 
measurable set A  with ( ) =Aμ  ( ) 0v − =AΩ  
 
(4.a) (Lebesgue decomposition) Let ( , )FΩ be a measurable space and μ  and v  two σ -
finite measures on it. Then there are unique measures acv  and sv  such that 

,ac c acv v v v μ= + ≺  and sv μ⊥ . 
 
(4.b) (Radon-Nikodym derivative) If μ , v  are σ -finite measures and v  is absolutely 
continuous with respect to μ , then there is a measurable function 0h ≥  for which 

( ) Ev E h= ∫ dμ  holds for all E F∈ . The function h  is μ - almost unique in the sense 
that any two such functions h  are equal . .a e∼μ . This function h  is called the Radon-
Nikodym derivative and denoted as dv

dμ . 

 
- 
- 
- 
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