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Summary 
 
Narrowly construed, Formal Logic is the study of definition and deduction (proof) in 
mathematical models of fragments of language. Its development has been intimately 
connected with that of Set Theory, the Philosophy of Language and more recently 
Theoretical Computer Science and Linguistics, so much so that parts of these fields are 
normally included in a broad conception of logic. It also has substantial applications to 
other areas of pure mathematics, especially through the work of Kurt Gödel.  
 
Modern logic started in the last quarter of the 19th century, with Georg Cantor’s 
discovery of set theory and Gottlob Frege’s attempt to create a “logical” foundation of 
mathematics. In the first half of this article, roughly Sections 1–3 and part of Section 4, 
we will give a brief, elementary account of the contributions of Cantor and Frege and 
the subsequent development of logic up to about 1908; not a proper history, as we will 
use modern terminology and oversimplify extensively, but an attempt to trace the roots 
of our subject. In the rest of the paper we describe in outline the developments in logic 
in the 20th century, especially the famous Completeness and Incompleteness Theorems 
of Kurt Gödel and some of what they led to. The pace is somewhat faster in this part, 
there are no proofs, and the more recent developments are just mentioned, with pointers 
to the six more advanced articles in this topic.  
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1. Cantor’s Set Theory 
 
According to Cantor, by a set we are to understand any collection into a whole of 
definite and separate objects of our intuition or thought.   
 
Thus the basic relation of set theory is membership, which holds between a set and its 
members (or elements), and which we denote by “∈”, the first letter of the Greek word 
for “is”:  
 

the object is a member of the setx A x A∈ ⇔ .  
 
If, for example,  
 

the natural numbers {0 1 2 }
the rational integers { 3 2 1 0 1 2 3 }

the (proper) fractions with 0

the real numbers

…
… …
x x y y
y

= = , , ,
= = ,− ,− ,− , , , , , ,

= , ∈ , > ,

= ,

 

 
then 3− ∉ , 3− ∈ , 2∉ , 2∈ , etc. Somewhat peculiar is the empty set ∅  
which has no members, so that x∉∅  for every object x .  
 
A set is completely determined by its members, i.e., for all sets A B, ,  
 

(for all )[ if and only if ]A B x x A x B= ⇔ ∈ ∈ .  
 
This is the Principle of Extensionality, and it implies, in particular, that there is only one 
empty set.  
 
For any definite (unambiguous) property of objects ( )P x , we define its extension  
 
{ | ( )} the set of all objects such that ( )x P x x P x= ,  
 
so that, for example, { | is an odd natural number}x x ,  is the set of odd numbers, and 
{ | }x x x≠ = ∅ . Notice that  
 
if { | ( )} then ( )A x P x x A P x= , ∈ ⇔ .  
 
We can use this basic Comprehension Operation to define the usual “Boolean” 
operations on sets, e.g.,  
 

{ | or }A B x x A x B∪ = ∈ ∈  
 
is the union of A  and B , the set whose members are all the members of A  and B  put 
together “into a whole”; and if 0 1A A …, ,  is a sequence of sets indexed by the natural 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. II - Formal Logic - Yiannis N. Moschovakis 

©Encyclopedia of Life Support Systems (EOLSS) 

numbers, then the union of the sequence is specified by 
  

{ | for some }n nn
A x n x A

∈
= ∈ , ∈ .∪ N

 

 
The binary and infinitary intersection operations A B∩ , nn

A
∈∩  are defined similarly, 

and so is the difference A B , comprising all the objects which are in A  but not in B , 
and the Cartesian product  
 

{( ) | and }A B x y x A y B× = , ∈ ∈ ,   (1) 
 
where ( )x y,  is the ordered pair of x  and y .  
 
A subset (part) of a set A  is any set whose members all belong to A , in symbols,  
 

(for all )[if then ]A B x x A x B⊆ ⇔ ∈ , ∈ ;  
 
and using the comprehension operation again, we can collect all the subsets of a set A  
into its powerset,  
 

( ) { | }A X X A= ⊆ .P  

1.1. Equinumerosity; Countable and Uncountable Sets 

Next to membership and identity, the most fundamental relation between sets is 
equinumerosity, which holds between A  and B  when a one-to-one correspondence 
exists between the members of A  and the members of B ; in symbols, and using the 
usual, mathematical notation for functions with domain A  and range B ,  
 

(there exists a bijection)cA B f A B⇔ : → .∼  

 
If A  and B  are finite, then, cA B∼  exactly when A  and B  have the same number of 
elements. This is what allows us to deduce that “there are just as many left shoes as 
there are right shoes in a shoe store” without actually counting either set, and it follows 
from the Pigeonhole Principle, the basic tool of counting: no finite set is equinumerous 
with one of its proper subsets. On the other hand, the function ( ) 2f n n=  establishes a 
one-to-one correspondence between the natural numbers and the even numbers, so that  
 

{0 2 4 }c E …= , , , ,∼ ⊊  

 
and so the Pigeonhole Principle fails for infinite sets. This fact was the source of many 
puzzles going back to antiquity, and (perhaps) also one reason why this way of 
comparing arbitrary sets for cardinality (size) was never studied before Cantor. It was 
Cantor’s bold stroke to transcend this “paradox” and to use equinumerosity as the basic 
relation in the construction of a far-reaching theory of cardinality for finite and infinite 
sets alike. To describe his first results, let us also introduce a notation for inequality and 
strict inequality of cardinal size:  
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(there is a subset )[ ]
and not

c c

c c c

A B C B A C
A B A B B A
< ⇔ ⊆ ,
< ⇔ < < .

∼
 

 
These relations are both transitive, e.g.,  
 
if and thenc c cA B B C A C< < , < .  

 
A set A  is countable if cA < , otherwise it is uncountable.  
 
Theorem 1. (Cantor’s basic results) 
    
(a) c c∼ ∼ .  
(b) For every set A , ( )cA A< P .  
(c) c< , i.e., there are uncountably many real numbers.  
 
Proof. (a) The equinumerosity c∼  is proved much as we showed c E∼ : we 
define a bijection of  with  by setting ( ) 2f n n=  for 0n ≥  and ( ) 2 1f n n− = −  for 

0n < .  
 
To prove c∼ , set 0 {0}A = , 1 { 1 1}A = − , , and for each 1n > , let nA  be the set of 
(proper) fractions d

n
±  with d n≤ , i.e.,  

 

{ } { }0 1 2 3
1 1 2 1 1 20 1 1
2 2 3 3 3 3

A A A A …⎧ ⎫ ⎧ ⎫= , = − , , = − , , = − ,− , , ,⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

 

 
These sets are all finite, and if we list their members in a row we get an enumeration of 
all the fractions with absolute value 1≤ :  
 

1 1 2 1 1 20 1 1
2 2 3 3 3 3

, − , , − , , − ,− , ,  

 
We can enumerate similarly all the fractions with absolute value 1> ,  

3 3 4 42 2 3 3 4 4
2 2 3 3

− , ,− ,− , , , − ,− , , ,  

 
and then interweave these two enumerations to get an enumeration of all the fractions, 
which now establishes a correspondence of  with :  
 

3 1 43 1 4
2 2 32 2 3

0 2 2 1 1 3 3 4 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

− − − − − − −
 

 
(b) To see that ( )cA A< P , assign to each x A∈  its singleton { }x , the subset of A  
whose only member is x ; this is a one-to-one correspondence, and so A  is 
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equinumerous with the subset of ( )AP  consisting of all the singletons, so ( )cA A< P . 
To see that ( ) cA A<P  cannot hold, suppose towards a contradiction that 

( )f C A: → P  is a one-to-one correspondence of some set C A⊆  with the powerset 
( )AP , and let 

  
{ | ( )}D x C x f x= ∈ ∉ .  

 
Now D  is a subset of A , and so ( )D f d=  for some d C∈ ; but then, by the definition 
of D  and the choice of d , ( ) ( )d f d d D d f d∈ ⇔ ∈ ⇔ ∉ ,  which is absurd.  
 
(c) Let us first assign to each A⊆  the real number ( )f A  with decimal expansion 

0 1 2a a a. , where 0ia =  if i A∈  and 2ia =  if i A∉ , so that, for example,  
2( ) 2222 ( ) 0000 0
9

f f∅ = . = , = . = .  

 
Simple properties of decimal expansions imply that f  is a one-to-one function, and 
hence a correspondence of ( )P  with some set of real numbers—those whose decimal 
expansions involve only 0 ’s and 2 ’s; thus ( ) c<P , which with (b) prohibits 

<c .   
 
Soon after these results and by the same “counting” methods, it was shown that the 
relation c<  partially orders the “equinumerosity classes” of sets:  
 
Theorem 2. (Schröder-Bernstein). For any two sets, if cA B<  and cB A< , then 

cA B∼ .  
 
One easy consequence of this result is that  
 

( ) ~ ~ n
c cP , 

 
which is rather surprising at first glance, since it is not immediate how to construct a 
one-to-one correspondence between (say) the line and the plane.  
 
Students find these arguments somewhat strange when they first see them, even today, 
and so did mathematicians in the 1870’s: no “formula” is given for the correspondence 

:f → , although one can easily compute any required value of it, and the diagonal 
argument used in the proof of (b) was totally unconventional. On the other hand, the 
proofs are elementary and utterly convincing—and the results are unexpected and 
spectacular. In plain words: there are exactly “as many” fractions as there are natural 
numbers, but there are “strictly more” real numbers; and there is a sequence of ever-
increasing “infinite cardinal sizes”, 
  

( )( ) ( ) .c c c< < <P P P  
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Cantor applied the new theory immediately to give a new proof of Liouville’s Theorem, 
that transcedental numbers exist. A real number is algebraic if it is a root of an 
algebraic equation 2

0 1 2 0n
na a x a x a x+ + + + =  with coefficients 0, , na a ∈…  and 

0na ≠ , otherwise it is transcedental. Liouville’s had shown the existence of 
transcedental numbers by a direct construction, which (naturally) depended on several 
not-quite-elementary ideas from number theory. Cantor proved something stronger, and 
more simply: that the set of algebraic numbers is countable, and so it cannot exhaust 

, which is uncountable. The only (simple) algebraic fact he needed was a that an 
algebraic equation has finitely many roots, and with it he counted the algebraic numbers 
very much like he counted the fractions in the proof above. This was a “killer 
application” which made set theory quickly known (if somewhat notorious) to the 
mathematical community.  

1.2. Cardinal Arithmetic 

Cantor assumed—with some informal explanation—that every set A  can be assigned a 
cardinal number A , so that, as with finite sets,  
 

~cA B A B= ⇔ ,         (2) 
 
and 0 = ∅ , { }1 x= ,  for any x , { }2 ,x y=  if x y≠ , etc. The least infinite cardinal  
 
ℵ=  
 
is “the number of natural numbers”, and 
 

( )c = = P   is the cardinal size of the continuum. To define the arithmetical 
operations and the order on (possibly infinite) cardinal numbers, choose disjoint sets K , 
L   so that ,K Lκ λ= = , and set  

( )

,
,

,

,c

K L
K L

L K

K L

λ

κ λ
κ λ

κ

κ λ

+ = ∪

⋅ = ×

= →

≤ ⇔ <

 

 

where the function space ( )L K→  (sometimes denoted by LK  or L K ) is the set of all 

functions :f L K→ .  In particular, if { },K x y=  is a doubleton, then 

( ) ( )~cL K L→ P , and so ( )2 Lλ = P . 
  
If κ   and λ  are finite, we get the usual sum, product, exponential and order on the 
natural numbers. Moreover, many of the usual laws of finite arithmetic hold: every non-
empty set of cardinal numbers has a least member, addition and multiplication are 
associative and commutative, multiplication distributes over addition, and 
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( )00 0, 1, ,
μλ μ λ μ λ λ μκ κ κ κ κ κ κ+ ⋅+ = = = ⋅ = . 

  
Addition and multiplication are trivial on infinite cardinal numbers:  
 

( )if , 0 and one of them is infinte, then max ,κ λ κ λ κ λ κ λ≠ + = ⋅ =  (3) 
 
These are the absorption laws. On the other hand, exponentiation is the source of some 
of the deepest problems in set theory: about the only simple inequality involving it is 

2κκ < , from Theorem 1. 
  
- 
- 
- 
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