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Summary 
 
This chapter is devoted to the Navier Stokes equation as a basic example of non linear 
partial differential equations. The reasons of the choice of this equation are two folds. 
0n one hand the mathematical study of the problem is up to now far from being 
completed leaving open several basic issues and results obtained up to now have 
involved many modern tools of mathematics. On the other hand these mathematical 
difficulties are closely related to the complexity of the physical phenomenon and this 
appear almost at all the steps of the analysis. 
 
1. Scaling, Hierarchies and formal Derivations 
 
Many systems of partial differential equations, linear and nonlinear, are used to describe 
physical phenomena such as electromagnetism, elasticity, etc… In this chapter we have 
chosen to describe the Navier-Stokes equations which govern the flow of a viscous 
fluid: they are of primary importance in fluid mechanics, and exhibit by themselves all 
the main features and difficulties of nonlinear equations.  
 
There are several reasons why the study of the Navier Stokes and other closely related 
equations has been central in the activities of mathematicians for more than two 
centuries. This started probably with Euler and involved the contributions of such 
diverse personalities as, Leray, Kolmogorov, Arnold and others. The Navier Stokes 
equations are perfectly well defined mathematical objects and are paradigms of 
nonlinear equations. The solutions exhibit in their behavior many characteristics of 
genuinely nonlinear phenomena. 
 
In view of the needs of practical applications in engineering sciences success has been 
limited. However the results that have been obtained contribute to our understanding of 
the program and this is the main idea that I would like to describe in these notes. 
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Fluid mechanics is in the range of our capacity of observations since the beginning of 
modern science. It is usual to quote some notes written by Leonardo da Vinci about 
turbulence in fluids. The mechanics of fluids has been used as a model for the 
description of phenomena that in the 18th and 19th centuries were quite mysterious, like 
electromagnetism (cf. Helmholtz who also made important contributions in vortex 
theory). Eventually the study of fluid mechanics contributed in an essential way, with 
the work of Boltzmann and Maxwell, to the understanding of the notion of atoms. 
 
There is no question about the validity of the equations. Nothing has to be discovered 
from them concerning the intimate nature of the physics. They are just consequence of 
the incontestable Newton law of mechanics either applied directly to the molecules of 
the fluid or applied, at a more macroscopic level to elementary volumes of fluid (even if 
it requires some non obvious work to go from the atomic description to the continuous 
one). The present problems are: how can one describe the phenomena with adequate 
equations, how can one compute them, and visualize the results in spite of their 
complexity. 
 
The equations involve some physical parameters and turn out to be relevant when these 
parameters have certain values. Therefore as an introduction it is natural to consider a 
“chain” of equations, hoping, as is often the case, that the next equation will become 
relevant when the structure of the phenomena becomes too complicated to be computed 
by the previous one. The Navier Stokes equations appear to be one of the main links in 
this chain: 
 

I   Hamiltonian system of particles, 
 
⇓ 
 

II   Boltzmann equation, 
 
⇓ 
 

III   Navier Stokes equations, 
 
⇓ 
 

IV   Models of turbulence. 
 

Each step is deduced from the previous one with the introduction of hierarchy of 
equations and a process of closure which in some cases leads to the appearance of 
irreversibility. 
 
According to the classical Newton law, the evolution of N  particles is described by a 
Hamiltonian system defined in the phase space 3 3N N×\ \ : 

2
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N is the Avogadro number, of the order of 2410 . One introduces σ , the range of action 
of the interacting potential V  (or the diameter of the molecules when instead of (1) one 
uses the dynamic of elastic collisions for the evolution of the system). 
 
To connect {I} and {II}, Boltzmann and Maxwell had the idea of studying the function 

( , , )f x v t  which describes the density of particles which have velocity v  at the point x  
and time t ; this is a solution of the so called Boltzmann equation: 
 

( ).t xf v f C f∂ + ∇ =         (2) 
 
In (2) the left hand side represents the evolution of the function f  under the sole action 
of the proper velocity v  of the particles. The right hand side is a collision operator 
which models the interaction between the particles. 
 
Formally (i.e. without proof of convergence) one proceeds as follows: first for the 
connection between {I} and {II} one introduce the density function 
 

1 2 1 2( , , , , , , , )N N Nf x x x v v v… …  
 
which describes the probability of having at time t  the first molecule at the point 1x  
with velocity 1v , the second at the point 2x  with velocity 2v  and so on. This function is 
a solution of the Liouville equation: 
 

{ , } 0.t N N Nf H f∂ + =         (3) 
 
Assume that the particles are indistinguishable which means that at time 0t =  and 
therefore at any time t  and for any permutation σ  of the set {1,2, , }N…  one has: 
 

1 2 1 2

(1) (2) ( ) (1) (2) ( )

( , , , , , , , , )
( , , , , , , , , ).

N N N

N N N

f x x x v v v t
f x x x v v v tσ σ σ σ σ σ=

… …
… …

 (4) 

 
Consider the limit of the first marginal when 2, 0,N Nσ σ λ→ → →∞ : 
 

1

2 2 2 2

( , , ) lim ( , , )

lim ( , , , , , , , , ) .
N

N N N N N

f x v t f x v t

f x x x v v v t dx dx dv dv

=

= ∫ … … … …
 (5) 

 
One proves that this function is a solution of the Boltzmann equation. To do so one 
must integrate (3) with respect to the variables 2 3 2 3, , , , , , ,N Nx x x v v v… …  and obtain, 
using (4), an equation of the form: 
 

1 1 1 1 2
t N N N N Nf L f M f∂ + =        (6) 
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with 
 

2 2
2 2

2 2 3 3

( , , , , )

( , , , , , , , , )
N N

N N N N N

f f x x v v t

f x x x v v v t dx dx dv dv

=

= ∫ … … … …
 (7) 

 
and 1

NL  and 2
NM  are suitable operators. 

 
To analyze the second marginal 2

Nf  one integrates (6) and obtains an equation for the 

third marginal 3
Nf  defined in a similar manner. Eventually one has a hierarchy (called 

the BBGKY hierarchy) of N  equations 
 

1, 1 1, { , } 0l l l l l N N
t N N N N N t N N Nf L f M f l N f H f+∂ + = ≤ ≤ − ∂ + =   (8) 

 
for the marginals: 
 

2 2 1 1( , , , , , , , , ) , 1 1

.

l
N N N N l N l N

N
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Letting N  go to infinity one obtains an infinite hierarchy which is called the Boltzmann 
hierarchy, formally written as: 
 

1.l l l l l
t f L f M f +∂ + =        (9) 

 
and one observes that if ( , , )f x v t  is a solution of the corresponding Boltzmann equation 
 

1 2 1 2
1

( , , , , , , , , ) ( , , )
l

l
l l l lf x x x v v v t f x v t=∏… …     (10) 

 
produces a solution of the hierarchy (9). A uniqueness argument (of the Cauchy 
Kowalewskaya type) plus the fact that the initial data are assumed to be factorized leads 
to the conclusion that 
 

1( , , ) lim ( , , ).Nf x v t f x v t=        (11) 
 
is a solution of the Boltzmann equation. 
 
Going from {II} to {III} is simpler and probably the part of the theory which is by now 
the best established both at formal and rigorous levels. One observes that the collision 
operator of the Boltzmann equation satisfies the following invariance (inherited from 
the underlying Liouville equation) 
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3
2

1 2 3( ) ( ) 0, for ( ) 1, , ,  and 
v
C f v dv v v v v vΞ = Ξ =∫\ | |     (12) 

 
and the entropy condition 
 

3 ( ) log ( ) 0
v
C f f v dv ≤∫\        (13) 

 
with equality if and only if f , as a function of v , is Maxwellian i.e. is given by a 
formula of the following type: 
 

2| |
2

2
( ) .

(2 )

v u

df v e θρ

πθ

−−
=        (14) 

 
In (14) d  is the dimension of the space, ρ  is the macroscopic density, u  the 
macroscopic velocity and θ  the macroscopic temperature. 
 
The derivation of {II} from {I} corresponds to a regime where: 
 

2lim , 0 .Nλ σ λ= < < ∞        (15) 
 
The inverse of this number has the dimension of a length, called the mean free path or 
Knudsen number. On the other hand the total volume occupied by the gas is of the order 
of 3Nσ  therefore in the above derivation this volume is very small. The term rarefied 
gas is used in this context and to go from {II} to {III} one should let 1λ ε −=  go to 
infinity. Therefore the Boltzmann equation is rescaled according to the formula: 
 

1 ( ).t xf v f C fε ε εε
∂ + ∇ =        (16) 

 
The quantities 
 

2

( , , ) ,

| | | |( , , ) , ( ) ( , , )
2 2 2

f

f
f f f f

f x v t dv

u d vu vf x v t dv f x v t dv

ε

ε ε

ρ

ρ ρ θ

=

= + =

∫

∫ ∫
 (17) 

 
define the macroscopic density of momentum, the internal energy and the temperature. 
 
At the level of equation (16) their computation would require the knowledge of higher 
moments, according to the formulas 
 

( , , ) ( , , ) 0,t xf x v t dv vf x v t dvε ε∂ +∇ =∫ ∫  (18) 
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( , , ) ( , , ) 0,t xvf x v t dv v vf x v t dvε ε∂ +∇ ⊗ =∫ ∫     (19) 
 

2 2| | ( , , ) | | ( , , ) 0,t xv f x v t dv v v f x v t dvε ε∂ +∇ =∫ ∫     (20) 
 
and so on, as in the first derivation an infinite hierarchy of moments. However, due to 
the relaxation property contained in equation (13), the fact that ε  goes to zero forces fε  
to become a Maxwellian and this leads to an explicit computation of the moments in 
term of ρ , u  and θ . 
 
In this way not only the compressible Euler equation but all the equations of 
macroscopic fluid dynamics for a perfect gas can be deduced, with some other 
convenient scaling, from the Boltzmann equation. 
 
Much more difficult and completely unsolved questions arise for the relation between 
{III} and {IV}. This corresponds to situations where the macroscopic fluid becomes 
turbulent and when some type of averaging is necessary for quantitative or qualitative 
results. In spite of being the very end of the chain, this step shares in common some 
points with the previous one. 
 
It is an averaging process and the “turbulent model” starts to be efficient when the 
original Navier Stokes are out of reach by direct numerical simulations. 
 
In this averaging appears a hierarchy of moments which has been studied “per se” (cf. 
section (3)). However this is not sufficient for the following reasons: 
 
There is up to now no well defined notion of equilibrium and relaxation to this 
equilibrium, with something that would play the role of the entropy as it appears in the 
derivation of {III} from {II} - not even an indirect proof as in the derivation of {II} 
from {I} by a uniqueness argument (which does not fully explain how things happen). 
 
The parameters that would lead to turbulent phenomena are not as clearly identified as 
in the previous steps of the hierarchy. In some sense they are less universal and more 
local. 
 
In conclusion there is up to now no case where a proof (even formal) of the validity of a 
derivation of {IV} from {III} is available. The arguments when they exist rely on 
phenomenological considerations and engineering experiments. In spite of this lack of 
justification, such are the equations used to design the airplanes in which you fly! 
 
It is an experimental fact (not a theorem) that no new mathematical results can be 
obtained at level n  of the chain of equations without the knowledge of its counterpart at 
level 1n + . A tentative explanation would be that the equations at level n  contains in 
their asymptotic behavior the properties of the equation at level 1n + . However as said 
above the derivation of the model of turbulence is not for the time being accessible by 
first principles from the macroscopic equations and this may be a reason why theorems 
at the level of the macroscopic equation remain incomplete. The macroscopic equations 
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are the cornerstone of the theory and this is the object of the next section, where 
comments will be made on the following issue: 
 

1) The existence of a smooth solution of the compressible Euler equation for 
“short time” before the appearance of singularities due to the generation of 
shocks. 

2) The existence of a weak solution of the incompressible Navier Stokes equation. 
 
The derivation of {II} from {I} for the hard spheres model was fully proved by O. 
Lanford, but only for short times. Same is the case for the derivation of the 
compressible Euler equation from the Boltzmann equation (Nishida, Ukai). Eventually 
with the introduction of a convenient scaling one derives the Leray weak solution from 
the renormalized solution introduced by di Perna and Lions for the Boltzmann equation. 
 
- 
- 
- 
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