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Summary 
 
Many physical and geometrical phenomena, although global, are determined by their 
local or instantaneous properties and governed by systems of differential or partial 
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differential equations. Differential systems often give very short and striking laws 
governing physical or mathematical phenomena, e.g. Newton's laws for gravitation and 
the movement of planets, Maxwell's equations for the electromagnetic field. But they 
are often very hard to solve, sometimes impossible, and it was important to build 
methods to construct approximate or asymptotic solutions. 
 
In this chapter we describe two important examples some general methods of 
developing asymptotic solutions and theories: the WKB method applied to the 
Schrödinger equation (section 2), and microlocal analysis, applied to high frequency 
Asymptotics for the wave equation (section 3). In the WKB method for Schrödinger's 
equation the small parameter is the Planck constant, or more accurately (since the 
Planck constant is an absolute constant) the ration between Planck's constant and the 
size of actions at the scale of the phenomena under scrutiny, which is usually very 
small. In microanalysis, applied to the wave equation, the large parameter is the size of 
frequency, which is indeed very large in light phenomena at our scale (so that we can 
observe sharp shades) - much less when one tries to describe sound propagation. 
 
Since a long time two points of view have prevailed in physics: the corpuscular point of 
view, which is the point of view adopted by Newton to describe light, and the wave 
point of view adopted by Huygens. Both account for large parts of the observations but 
they are rather incompatible or even contradictory (a more unifying point of view 
emerged with quantum physics). It is remarkable that the apparent contradiction 
between the particle and wave point of views is attenuated by these asymptotic theories; 
in many cases particles and the Hamiltonian mechanics which govern their movements 
appear as an asymptotic limit of the wave theory. 
 
1 Introduction 
 
The question of using waves or particles to describe physical phenomena like the 
propagation of fluids, gas, electricity and light has been a central issue of science since 
the beginning of scientific times. Descartes developed geometric optics, which is best 
explained by a corpuscular vision of light; Huygens developed wave analysis and was 
already quite aware of the particle/wave duality. Ideas became more precise in the 19th 
century; Boltzmann favored atoms while Mach, slightly earlier, was the leader of the 
vigorous school which used what we call at present waves. Both points of view become 
eventually totally entangled in the 20th century with the advent of quantum physics.  
 
A fundamental idea of quantum physics is that small objects behave both as waves and 
particles, and that physical observables do not commute and cannot be measured 
simultaneously (Heisenberg). In Schrödinger’s approach, an elementary particle is 
described by its wave amplitude ( )x tϕ , , which is a complex valued function of a space 

variable 3x∈\  (depending on time t ). Equivalently this is represented by the Fourier 
transform: 
  
ˆ( ) ( )n

ix ne x d xξϕ ξ ϕ− ⋅= ,∫\                                                                             (1.1) 
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a function of an momentum variable 3ξ ∈\  (still depending on time).  
 
The original function is given back by the Fourier reciprocity formula (inverse Fourier 
transform): 
  

ˆ( ) (2 ) ( )n
n ix nx e dξϕ π ϕ ξ ξ− ⋅= .∫\                                                                    (1.2) 

 
In this description, “particles” - corresponding to the case where ( )xϕ  vanishes outside 
a small set, well localized in space, can sometimes be viewed as limits of waves, or 
conversely, but Heisenberg’s incertitude principle, which says that one cannot have at 
the same time access to the position and the velocity of small objects as elementary 
particle is “obvious”: ϕ  and ϕ̂  cannot both have a 1-point support - in fact if one 
vanishes outside of a bounded set, the other is analytic and cannot vanish outside of a 
bounded set. A more precise yet elementary formulation, for functions f  of one 
variable, is given by the inequality: 
  

2 2 2 2ˆ( ) ( ) 2 ( ( ) )xf x dx f d f x dxξ ξ ξ π| | | | ≥ | |∫ ∫ ∫\ \ \
 ,                                 (1.3) 

 
which is true for any square integrable function 2 ( )Lϕ ∈ \  (Equality is reached with the 

Gaussian function: 
21

2( ) xx eϕ −
= ). Observe that the first integral in the left hand side of 

(1.3) measures by its smallness the fact that f  “is localized” near zero, and the second 
does the same for f̂ . This is an elementary quadratic inequality: integrating by parts 

one gets, for any real α : 2 2 2 2 2( ) ( ) 0xf f f xf fα α α′ ′− + = + ≥∫ ∫  hence 
2 2 2( )xf f f′ ≥∫ ∫ ∫ , which is equivalent to (1.3). 

 
Mathematical tools dealing with these difficulties and with asymptotic calculus 
generally were developed systematically; they can be considered as the starting point of 
microlocal analysis. Two basic examples have motivated this theory: the Schrödinger 
equation and the theory of the wave equation. Asymptotic analysis with respect to the 
parameter =  is quite natural for the Schrödinger equation; it leads to the notion of 
pseudo-differential calculus with a parameter, or semi-classical calculus. Expansions in 
terms of high frequencies are even older and also quite natural in the description of light 
waves; they lead to the calculus of pseudo-differential operators, developed by L. 
Nirenberg, J.J. Kohn, L. Hörmander etc. in the late sixties.  
 
Microlocal analysis develops a very geometrical manner of dealing with this asymptotic 
calculus, reconciling asymptotically in a remarkable manner the techniques of wave 
analysis (Fresnel’s description of light) and of particle analysis (geometrical optics). 
The name was pinpointed in 1970 when were announced in the Nice international 
congress the definition of the wavefront set (L. Hörmander, M. Sato), the possibility of 
using canonical transformations (J.V. Egorov), and the description of remarkably simple 
microlocal models for complicated systems of differential equations (M. Sato).  
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This program has several outgrowths, such as:  
 

• The construction of high frequency approximations of the solutions of the 
Maxwell and wave equations, including significant qualitative and quantitative 
information. This is used e.g. in the design of antennas and in the evaluation of 
the radar stealthiness of a plane or a missile. Much work was devoted to this 
analysis, both in the U.S.A. and in the Soviet Union, e.g. in the work of J. 
Keller, V. Babich and their collaborators. An important point was evaluating 
what part of the wave is diffracted by the obstacle. Later work in this direction 
used in a significant manner propagation of “Gevrey regularity” (in fact 
Gevrey 3 ) and “Gevrey microanalysis”, see Section 3.9.4. 

 
• A precise analysis of the distribution of eigenvalues of the Laplace operator in a 

bounded domain (see Section 3.8) begins with H. Weyl’s remarkable asymptotic 
estimate of the eigenvalues. The error term in this evaluation turned out to be 
very difficult to control, and the best result was given by L. Hörmander, who 
used for this Fourier integral operators for the first time, in his paper on the 
spectral function of elliptic operators. Many other beautiful results relating the 
spectrum of the Laplace operator on a domain and the geometry, of the domain 
or relations between the spectrum and the configuration of closed geodesics are 
made possible and precise using microlocal analysis, see Section 3.8; 
significantly a founding paper by M. Kac on this subject is titled “can you hear 
the shape of a drum”.  
 

• Analysis of the scattering of quantum particles by a localized potential, or of a 
wave by an obstacle, in particular with the description of the scattering 
frequencies.  
 

The tools introduced are general enough to produce results for many problems related to 
those above: Dirac equation, Maxwell equations, equations of elasticity with no stress 
on the boundary etc.  
 
Microlocal analysis is also used for more theoretical results, e.g. in the proof of 
sophisticated variants of Holmgren’s uniqueness theorem.  
 
In this chapter we have concentrated on the Schrödinger and the wave equations, which 
illustrate particularly well the motivations and methods of microlocal analysis, and for 
which results are quite striking.  
 
We have mostly followed the presentation of L. Hörmander, which remains close to our 
usual insight in analysis or geometry.  
 
A more algebraic approach, based on the fact that distributions are superpositions of 
boundary (edge) values of holomorphic functions defined in angular complex sectors, 
and using deeply and systematically the theory of holomorphic functions of several 
variables, was developed by the Japanese mathematicians (M. Sato, T. Kawai, M. 
Kashiwara).  
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2. The Schrödinger Equation and Semiclassical Analysis 

2.1 Schrödinger equation 

This is the equation  
 

2
0

2t V
i

φ φ φ∂ − Δ + =
= =   ,                                                                               (2.1) 

 
where ( )V x , the potential, is a real valued function. We will not go into the explanation 
of the role of the Schrödinger equation in modern physics; it is however important to 
recall the following facts.  
 
1. The solution of the equation with prescribed initial data 0( 0)xφ φ, = , is given by a 

unitary group of operators in the Hilbert space 2 ( )nL \  :  

0( )
t
i H

tx t eφ φ φ, = = = . 
 
The generator H  is a selfadjoint operator extending the differential operator 

21
2 x VΔ −=  (differential operators are not bounded operators, and there may be several 
“natural” selfadjoint extensions, in particular on bounded domains, and it is not always 
easy to prove that there is one if V  is unbounded and not positive; but here we will 
usually write 21

2 xH V= Δ −=  and ignore this difficulty. Since itHe  is unitary, the 2L -
norm tφ|| ||  is invariant:  

2 2 2
0( )nt x t dxφ φ φ= | , | = .∫\|| || || ||                                                                    (2.2) 

 
In quantum physics this is normalized to 1 and 2(x tφ| , |  is then interpreted as the 
probability density, at time t , of the presence of a particle at a point x .  
 
2. The Planck constant =  is a physical constant determined by experiment. What is not 
constant is the scale at which one makes measures or observations. At the atomic scale 
(very small lengths and short times) =  is not at all negligible and one must deal with the 
complete Schrödinger equation above (this accounts very accurately for what is 
observed experimentally). On our macroscopic scale however, =  is comparatively very 
small and is treated as a vanishing quantity ( 0→= ). This does not mean that one can 
replace =  by 0  in the equation, because we are typically dealing with a “singular 
perturbation”, i.e. the terms which vanish involve higher order derivatives than those 
which remain. What one is really interested in is the asymptotic behavior of solutions 
for 0→= , hoping that this will turn out to be simpler than the global behavior of 
complete solutions, realize a connection between quantum and classical mechanic and 
eventually produce new tools to analyze the original equation.  
 
More generally semi-classical analysis studies asymptotic solutions of differential 
equations 0Pf � , or Pf g� , for 0→= , where P  is an asymptotic differential 
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operator of the form:  
 

( ) ( )k
x kP x D P x D, , , ,∑= = ∼ = =                                                                       (2.3) 

 
associated to a function (symbol) ( )p x ξ, ,= , and k

kf f∑∼ =  is an asymptotic function 
or distribution, so as g . Here and in the entire sequel, we have set:  
 

1

1 1( )
nx xD …

i i
∂ ∂ ∂= = , , . 

 
A remarkable feature of semi-classical analysis is that it relates the study of asymptotic 
solutions to classical mechanics, using what is now called “micro-local analysis”. The 
Schrödinger equation is its first and most important motivation and application.  

2.2 WKB Asymptotics 

It is customary to look for oscillating asymptotic solutions of the Schrödinger Eq.(2.1) 
in the form: 
  

( )( ) ( ( ) ( ))
i S x tx t e a x t Oφ ,, , +=

= � = .                                                                   (2.4) 
 
The exponent ( )S x t,  is called phase and ( )a x t,  amplitude. The W.K.B. method is the 
method for producing such asymptotic solutions (W.K.B. stands for Wentzel-Kramer-
Brillouin): note that we have the operator relation  
 

2

2

2

( )
2

1( )
2

1( ))
2

1
2

i iS S
t

t x

t x x x

x

e V e
i

S S V a

a S a S a
i

a

∂− − Δ + =

+ | | +

+ + . + Δ

− Δ

= == =

=

=

                           (2.5) 

 

which follows from the elementary relations ( )
i iS S

k k ki ie e S∂ ∂ ∂−
= += == = . Inserting this 

in (2.4), we get for 0 -order terms the “eiconal equation”:  
  

21 ( ) ( ) 0
2 x

S S V x
t

∂
∂

+ ∇ + =                                                                             (2.6) 

 
and for 1st order terms the “transport equation”:  
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1 1 ( ) 0
2 2t x x xa S a S a∂ + ∇ ⋅∇ + Δ = .                                                                (2.7) 

 
The eiconal Eq.(2.6) is familiar in fluid mechanics and control theory, where it is called 
the Hamilton-Jacobi equation, and there are several ways of analyzing it. For our 
purpose the natural route is the connection with Hamiltonian systems. Let  
  

21( ) ( )
2

E E x V xξ ξ= , = | | +  

be the Hamiltonian function associated with the operator 21
2 ( )x V x− Δ += ; the 

Hamiltonian vector field (see section 2.10) EL  is defined as  
 

j j j jE x j x
j j j

E E VL
x xξ ξ

∂ ∂ ∂∂ ∂ ξ ∂ ∂
∂ξ ∂ ∂

= − = − .∑ ∑  

 
Assuming that S  is smooth (at least twice differentiable), we introduce the Lagrangian 
manifold 2n

SΛ ⊂ ×\ \ , set of all points ( )x tξ, ,  with ( )xS x tξ = ∇ , . (Lagrangian 
means that the differential 2-form j jd dxξ∑  induces 0  on SΛ , which follows from the 

Schwarz identities 
2 2

i j j i

S S
x x x x
∂ ∂

∂ ∂ ∂ ∂= . Lagrangian manifolds play a crucial role in 

microanalysis, as we will see further in Section 3).  
 
Because SΛ  is Lagrangian, the Eiconal equation implies that the Lagrangian manifold 
is tangent to t aL∂ + , i.e. SΛ  is the union of integral curves of the system  
 
dx H
dt ξ ξ= ∇ = ,  

  

x
d H
dt
ξ
= −∇ .                                                                                          (2.8) 

 
with initial point (for 0t = ) 0 0(0) (0) ( )n

xx x S xξ= ∈ , = ∇\ .  
 
For any 0

nx ∈\  there exists a unique integral curve ( ) ( )x t tξ,  with initial data 

0 0 0(0) (0) ( )xx x S xξ ξ= , = = ∇ ; the eiconal equation implies that along this curve we 

have ( )dS
dt E x ξ= − ,  i.e.  

 
2

0
1( ( )) ( (0)) ( ( ) ( ))
2

T dxS x T S x V x dt
dt

− = − + .∫                                              (2.9) 

 
This determines the phase S  completely, at least for small t , because the map 
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( ) ( ( ) )x t x t t, ,6  is one to one, at least for small t  (this follows from the implicit 
function theorem).  
 
Once S  is known, the amplitude a  is determined by integrating the transport equation 
along the integral curve above. This gives a solution mod. 2= . One can improve and get 
an asymptotic solution mod. −∞= , replacing a  by an asymptotic sum k

ka∑= : ka  is 
computed recursively as a solution of a transport equation kTa = ∗ , where the transport 
operator T  is the first order operator appearing in (2.7), and the right hand side is given 
in terms of the preceding ja .  
- 
- 
- 
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