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Summary 
 
Discrete mathematics is a branch of mathematics dealing primarily with finite and 
combinatorial structures. It often plays a pivotal role in pure mathematics, and also in 
applied mathematics in the widest sense of the word, including computer science, 
statistics, mathematical programming, operations research, etc. Discrete mathematical 
considerations are also useful in engineering, e.g., electrical and chemical engineering. 
After a brief introduction to the fundamental issues in discrete mathematics, this chapter 
explains some typical aspects of discrete mathematics often with motivations from 
applications. The discrete mathematical objects covered here are square configurations 
(magic, Latin, and Euler squares), bipartite graphs, and discrete convex functions.  
 
1. Introduction 
 
1.1 Fundamental Issues  
 
Discrete mathematics is a branch of mathematics that primarily studies finite and 
combinatorial structures. It seems to be difficult, however, to give a formal definition of 
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discrete mathematics. Let us, instead, start with a very simple example to explain some 
fundamental issues in discrete mathematics. 
 
Suppose that we are interested in possible words of length four, composed of distinct 
English alphabets, ‘a’ to ‘z’. For simplicity of our arguments, let us assume that we do 
not care whether the words have meanings or not. This means that we are, in fact, 
interested in possible sequences of length four, rather than legitimate English words of 
length four.  
 
The first question we may ask is: Does there exist such a word? The answer is obviously 
‘yes’. We can indeed justify this answer by demonstrating a word of length four, say 
‘math’. We could have chosen ‘four’ or ‘fuor’ as an evidence of existence, but ‘good’ is 
not a valid choice because it does not consist of distinct alphabets. The problem of 
existence of an object with certain prescribed properties is most fundamental in every 
branch of mathematics.  
 
Knowing the existence, we may then ask: How many? The answer is not trivial, but 
relatively easy. There are 26 possibilities for the first alphabet of a word, 25 for the 
second, 24 for the third, and 23 for the fourth. Therefore, there are 26 × 25 × 24 × 23 = 
358,800 words of length four that are composed of distinct alphabets. This is a problem 
of counting, which asks for the number of the objects with certain prescribed properties.  
Some of us may want to see a list of these 358, 800 words. This is a problem of 
enumeration, which asks for an explicit list of the objects with certain prescribed 
properties. Here we distinguish enumeration from counting, although enumeration 
sometimes means counting. Listing all these 358,800 words is easy in principle, but not 
feasible in practice, at least on a blackboard. This is often the case in discrete 
mathematics: The number of these objects is finite, but just too large. 
 
Someone else may want to select the best word from these 358,800 words---the best 
according to his/her criterion. This is a problem of optimization, which asks for an 
optimal choice from among the objects with certain prescribed properties. The optimal 
object depends, of course, on the criterion we employ. In our present problem, for 
example, the optimal word could be ‘math’ or ‘love’, depending on our criterion. 
Optimization on discrete objects is called discrete optimization or combinatorial 
optimization.  
 
For enumeration or optimization, for example, we need systematic and automatic 
methods to handle a huge number of objects, explicitly or implicitly. Algorithmic 
construction is an important ingredient in discrete mathematics in that it gives concrete 
ways for constructing desired objects, and also it makes it possible to apply discrete 
mathematical results to real world problems. Efficiency of algorithms is crucial in 
applications to large-scale problems. As we have seen above, the number of possible 
configurations is typically huge, though finite. 
 
Thus the questions of existence, counting, enumeration, optimization, and algorithmic 
construction may be identified as the fundamental issues in discrete mathematics. 
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As the name indicates, discrete mathematics studies discrete structures or discrete 
objects in general. The adjective ‘discrete’ means ‘being separate’, as opposed to 
‘continuous’ or ‘smooth’. For example, the set of integers is discrete in contrast to the 
set of real numbers, which is continuous. A discrete set is not always finite, but even if it 
contains an infinite number of elements, like the set of integers, discrete mathematics 
usually studies the properties that are consequences of the finiteness in a certain 
appropriate sense. A typical discrete mathematical study on the set of integers is the 
residue classes modulo prime numbers. Such finite algebraic structures are typical 
discrete structures.  
 
1.2 Squares 
 
Balanced square configurations represent another kind of discrete structures studied in 
discrete mathematics. We describe here magic squares, Latin squares, and Euler squares.  
A magic square is a square array in which integers are placed in such a way that the 
sums of the numbers in each row, in each column, and in each of the two diagonals are 
the same. If the size of the square is n , the integers placed are all distinct, ranging from 
1 to 2n . The common value of the sums should be 21 2 n+ + +  divided by n , which is 
equal to 2( 1) / 2n n + . 
Magic squares of order 3,4,5n = are given respectively by 
 

17 24 1 8 15
16 3 2 13

8 1 6 23 5 7 14 16
5 10 11 8

3 5 7 , ,and 4 6 13 20 22
9 6 7 12

4 9 2 10 12 19 21 3
4 15 14 1

11 18 25 2 9

, 

 
where these squares are not the only possibilities. For the square of order 3n = , for 
example we can verify the row sums: 
 
8 1 6 3 5 7 4 9 2 15+ + = + + = + + = , 
 
the column sums: 
 
8 3 4 1 5 9 6 7 2 15+ + = + + = + + = , 
 
and the diagonal sums: 
 
8 5 2 4 5 6 15+ + = + + = . 
The common value of the sums is 215 3 (3 1) / 2= × + . 
 
Magic squares are known to exist for 3n ≥ , whereas the nonexistence for 2n = is easy 
to see. Construction algorithms are also known. Magic squares have been studied for 
mathematical recreations, but there are a number of other types of combinatorial 
configurations that have serious practical applications.  
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Latin squares are more serious objects in discrete mathematics that have applications to 
the design of experiment. A Latin square of order n  is a square array in which integers 
1,2,...,n  are placed in such a way that each row contains each integer exactly once and 
each column contains each integer exactly once. This implies that each integer appears 
n times, once in each row and once in each column.  
 
Here are two examples of a Latin square of order 4n = : 
 
1 2 3 4 1 2 3 4
2 1 4 3 4 3 2 1
4 3 2 1 3 4 1 2
3 4 1 2 2 1 4 3

.       (1) 

 
Note that the first array, for instance, can be decomposed as the ‘sum’ (superposition) of 
the following four square arrays: 
 
1 2 3 4

1 2 3 4
1 2 3 4

1 2 3 4

. 

 
This shows that a Latin square of order n , in general, is equivalent to a collection of n  
‘disjoint’ permutations.  
A Latin square exists for any order n . The simplest construction method is to define the 
entry ija at position ( , )i j  to be the remainder of 1i j+ −  when divided by n , where the 
remainder 0  is replaced by n . For instance, this construction for 4n = yields 
 
1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

, 

 
which is a Latin square indeed. This construction is algebraic in that it is based on 
arithmetic modulo n . More sophisticated algebraic methods, relying on the theory of 
finite fields, are developed for the construction of Latin squares. 
 
A pair of Latin squares, say, ( )ija and ( )ijb  of the same order n  is said to be orthogonal 

if the 2n  pairs ( , )ij ija b  are all distinct. The two Latin squares in (1) are, in fact, 

orthogonal and the array of the pairs ( , )ij ija b  looks like  
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(1,1) (2,2) (3,3) (4,4)
(2,4) (1,3) (4,2) (3,1)
(4,3) (3,4) (2,1) (1,2)
(3,2) (4,1) (1,4) (2,3)

. 

 
Such a configuration formed by a pair of orthogonal Latin squares is called an Euler 
square. The order of an Euler square is defined naturally as the order of the component 
Latin squares. 
Euler squares have a long history. As the name suggests, this configuration was first 
conceived by L. Euler, a Swiss mathematician in the 18th century, in the problem of the 
36 officers. Suppose that there are 36 officers of 6 ranks from 6 regiments. Is it possible 
for them to form a 6-by-6 square configuration such that each row contains one officer 
of each rank and each column contains one officer from each regiment? As is easily 
seen, this problem asks about the existence of an Euler square of order 6.  
 
Euler investigated the existence of Euler squares of a given order n in general. First, it is 
trivial to see that no Euler square of order 2n =  exists. He showed how to construct 
Euler squares when n  is odd or is a multiple of 4. But he could not see how to construct 
the square for 6n =  and conjectured futher that no Euler square existed when n  is of 
the form 4 2n k= +  with an integer 1k ≥ . Note that 6n =  is of this form with 1k = . A 
proof of the nonexistence for 6n =  was given by. G. Tarry only around 1900. 
Furthermore, around 1960, R. C. Bose, S. S. Shrikhande and E. T. Parker disproved the 
conjecture of Euler for 4 2n k= +  with 2k ≥ . Thus it is known, at present, that Euler 
squares of order n  exist unless 2n =  or 6n = . 
 
Orthogonal Latin squares are closely related to block designs, to be explained in a later 
chapter. (see Combinatorics) 
 

 
 

Figure 1: Graphs 
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1.3 Graphs 
 
Graphs are also typical discrete structures. A graph consists of vertices (points) and arcs 
(lines), as illustrated in Fig.1. When the arcs are given orientations, as in the top of Fig. 
1, a graph is called a directed graph, or a digraph for short. When the arcs have no 
orientations, as in the bottom of Fig. 1, it is called an undirected graph. A graph can be 
drawn in a plane, but in many different ways.  
 
Usually we are not concerned how we draw pictures. For examples, the two directed 
graphs in the top of Fig. 1 are not distinguished from each other, but identified with 
each other; rotate the right picture counterclockwise by 90 degrees to see this. Similarly, 
the two undirected graphs in the bottom of Fig. 1 are identified with each other.  
 
Many interesting problems, from pure mathematics and from engineering applications, 
can be formulated through graphs. For example, given a graph, we may ask whether 
there exists a path with certain prescribed properties. The Hamiltonian path problem 
asks if a given graph contains a path that goes through every vertex exactly once.  
 
The Eulerian path problem asks if a given graph contains a path that goes through every 
arc exactly once. The linking problem asks if a given graph contains a set of disjoint 
paths that connect a specified set of entrance vertices to another specified set of exit 
vertices.  
 
A graph ( , )G V A=  with vertex set V and arc set A is said to be bipartite if the vertex 
set V can be partitioned into two disjoint subsets, say, S and T such that each arc 
connects a vertex in S  and a vertex inT . In this case we often denote the biparitite 
graph as ( , ; )G S T A= . A bipartite graph is illustrated in Fig. 3, in which the vertices in 
S  are denoted by • and those in T  by .  
 
Bipartite graphs are often used in applications to represent incidence relations, or 
connections, between two different sets of objects. A typical example of such 
representation appears in the assignment problem in operations research. In the 
assignment problem, possible assignments of workers to jobs are represented by a 
bipartite graph ( , ; )G S T A= , where S  and T  denote the given sets of workers and jobs, 
and an arc between a worker and a job means that the worker is capable of the job. The 
assignment problem will be treated later under the name of the matching problem.  
 
1.4 Algorithms 
 
Discrete mathematics is used in applied mathematics in the widest sense of the word, 
including computer science, statistics, mathematical programming, operations research, 
etc. Discrete mathematical considerations are also useful in science (e.g., chemistry, 
physics, biology) and engineering (e.g., electrical engineering). Use of discrete 
mathematics in applications is reinforced when mathematical results are accompanied 
by efficient algorithms. Many different kinds of algorithms have been developed in 
discrete mathematics; algorithms for graphs and networks, for strings and texts, for 
algebraic operations, for geometric computations, etc. 
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Figure 2: Bipartite graph 
 
The theory of computational complexity affords a theoretical framework to investigate 
the efficiency of algorithms in a rigorous manner. Roughly speaking, the efficiency of a 
particular algorithm is measured in terms of the number of basic operations needed in 
the algorithm. 
 
 If the number of basic operations involved in the algorithm is bounded by a polynomial 
in the size of a problem instance to be solved, the algorithm is said to be a polynomial-
time algorithm. It is widely accepted that a polynomial-time algorithm may be regarded 
as being efficient, in theory and in applications. What matters is not the distinction 
between finite and infinite, but the distinction between polynomial and nonpolynomial. 
 
Some typical aspects of discrete mathematics are explained in the following subsections 
for matchings on bipartite graphs and discrete convex functions. The following sections 
present more systematic descriptions on graph theory (see Graph Theory), 
combinatorics (see Combinatorics), computational complexity (see Computational 
Complexity), algorithms (see Algorithms), and optimization (see Optimization). 
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2. Bipartite Matchings 
 
In this section we consider matchings in bipartite graphs to explain some typical results 
in discrete mathematics. Emphasis is placed on min-max duality phenomena and 
decomposition into subgraphs with reference to matchings. A possible application of 
this result to large-scale numerical computation is also explained.  
 
- 
- 
- 
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