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Summary 
 
In this chapter, we survey basic notions and fundamental theorems and questions in 
computational complexity theory. We will also explain some of the topics that have 
become active more recently. Note that there are many interesting research topics and 
important results in computational complexity theory. For these and the technical details 
omitted in this chapter, it is recommended to refer the textbooks given in the 
bibliography.  
 
1. Introduction 
 
Computational complexity theory is the field of theoretical computer science that 
studies the complexity of problems for answering questions like “How fast can we solve 
this problem?” In general, “resource bounded computability” is the main subject of 
computational complexity theory. Note that “computability” itself had been a topic of 
interest in mathematics long before the emergence of modern computers; indeed, the 
mathematical formulation of the “computability” notion lead to the invention of 
programmable digital computers. On the other hand, the efficiency of computation had 
not been considered seriously before the invention of the computer, but its importance 
was recognized as soon as computers were being used. Thus one could say that 
computational complexity theory is a field that has started with computers. In this 
chapter, we will survey basic notions, fundamental theorems and questions, and some 
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recent results in computational complexity theory. Before starting technical explanation, 
let us first agree on a framework that is assumed common to computational complexity 
theory.  
In computational complexity theory, we consider only problems that are completely and 
formally specified. But even among mathematically specified problems, a problem like 
“Solve Riemann’s conjecture” is not of our interest. Instead, we consider a problem 
asking for an answer to a given instance of the problem, i.e., a problem of computing 
some given function on a given input. For example, a problem is specified in the 
following way:  
 
Max. Clique Problem (abbrev. CLIQUE) 
Instance: An undirected graphG . 
Question: What is the size of the largest clique (i.e., complete subgraph) of G ? 
 
Also for our technical convenience, we assume that input instances and outputs are 
encoded as binary strings, i.e., finite strings over the alphabet{0,1}. (We use {0,1}n  and 

{0,1}∗ to denote respectively the set of binary strings of length n and the set of finite 
binary strings.) In the above problem, for example, we assume that the input graph G   
with n vertices is given as its adjacency matrix, which is expressed as 2n  bits. Of curse, 
there are various ways to encode a given object. Here we assume some “reasonably 
efficient” encoding. For example, for encoding an integer n , we usually use the standard 
binary code of n . But we may also encode n  as a decimal notation and then encode 
each digit by using, e.g., the ASCII code. The difference is only some constant factor, 
and we usually ignore any constant (or small) difference. On the other hand, we may 
also encode n  by a string 0n , i.e., a sequence of 0’s of length n . But this code is 
exponentially longer than the binary code, and so, it is not used unless required for some 
specific purpose.  
 
Given a problem, one would like to ask the amount of “resource” (most typically 
“time”) necessary for solving the problem when the most efficient algorithm is used, 
and this is the basic question on computational complexity. Of course, algorithm’s 
running time heavily depends on the computer being used, and clearly, we cannot 
consider all existing computers. Thus, for discussing computational complexity, we use 
abstract machine models that represent (some aspects of) current computers. Note also 
that there are various kinds of resources, though “time” is usually the most important 
one. (We will see some typical machine models and their resources in the next section.) 
Another important convention assumed in computational complexity theory is that 
complexity, i.e., the efficiency of algorithms or the difficulty of problems, is measured 
in terms of the “size” of input instances. This is because we are usually interested in 
how the complexity grows when instance size gets increased. There are various ways to 
define “instances size”, and one should choose an appropriate one depending on what 
one wants to analyze. On the other hand, for general discussion, we may safely use the 
length, i.e., the number of bits, of an input string as instance size. (Recall that we 
assumed that each input instance is encoded as a binary string.) Throughout this chapter, 
“instance size” will mean to the length of the input string.  
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Finally, we propose throughout this chapter to consider only “decision problems”, 
where a decision problem is to decide whether a given instance is ‘yes’ or ‘no’. That is, 
we consider only problems of computing some function whose output is either 1 
(meaning ‘yes’) or 0 (meaning ‘no’). This simplifies our discussion because we can use 
simpler machine models and we do not have to worry about output length. What is more 
important is that this restriction is not essential because any problem can be converted to 
same decision problem with almost the same complexity. For example, for the CLIQUE 
problem mentioned above we can consider the following decision version.  
 
Max. Clique Problem (CLIQUE) 
Instance: An undirected graph G  and an integer k . 
Question: Does G  have a clique of size k≥ ? 
 
These two versions of CLIQUE have almost the same complexity. Certainly, we can 
easily convert any algorithm for the previous CLIQUE to the one for the decision 
version. By using the standard binary search strategy, we can easily solve the previous 
CLIQUE by using any algorithm for its decision version. This type of relationship 
always holds in general. Therefore, unless complexity analysis is affected by some 
subtle difference between non-decision and decision version, decision problems are 
usually considered in computational complexity theory, and we will follow this 
convention here.  
 
Notice that any decision problem is completely specified by the set of ‘yes’ instances of 
the problem, or more precisely, the set of binary strings encoding those ‘yes’ instances. 
Thus, we usually identify a problem with its ‘yes’ instances. For example, CLIQUE is 
the set of pairs ( , )G k  such that G has a clique of size k≥ . 
 
In this chapter, journal publication year is used for stating the year of each result so long 
as it is published in some journal.  
 
2. Machine Models and Complexity Measures 
 
We first define our method of discussing the efficiency of a given algorithm, i.e., the 
amount of “resource” that the algorithm consumes. For this, we need to specify a 
machine on which the algorithm is executed, a type of resource that we want to measure, 
and the method of discussing the efficiency in total. In the following, we will explain 
these points.  
 
First consider machineries for computation, often called machine models or 
computation models. Many machine models have been proposed, but we explain here 
four typical models: deterministic Turing machine, randomized Turing machines, 
nondeterministic Turing machines, and families of Boolean circuits. Since resources are 
defined depending on machine models, these are defined along with each model.  
 
Deterministic Turing Machines (Det. TMs) 
 
Turing machine (TM in short) is the most commonly used machine model that has been 
used by researchers in theoretical computer science. In particular, multi-tape 
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Deterministic Turing machine (det. TM in short) has been used as a model for normal 
sequential computation devices. 
 
Let us recall briefly the definition of det. TM. A multi-tape Deterministic TM consists of 
one work-tape, one read-only input-tape, one write-only output-tape, and an internal 
state taking an element in some finite set. (For a model of algorithms solving decision 
problems, we do not need to use the output-tape; we can simply use two special halting 
states, i.e., the accepting (yes) and rejecting (no) states, for indicating machine’s output.) 
A TM determines the next move from the current state and the symbols of the cells 
currently scanned by the machine’s tape heads. In one move, the machine writes a 
symbol on the currently scanned cell on the work-tape, moves the work-tape and head 
to the right or left, and changes the internal state. It may also write a symbol on the 
output-tape and move the output-tape head to the right. For a given input x , the machine 
starts its computation with x  on its input tape and blank symbols on the other part of 
the tapes. The computation terminates at the time when internal state becomes one of 
the halting states. The output of M  on input x , which we denote ( )M x , is the string 
written on the output-tape at termination.  
 
By using TM, we can naturally define the notice of “computation time” and “memory 
space”, the most important resources in computational complexity theory. For a TM M  
and for a given input x , the (computation or running) time of M on x , which we denote 
time ( )M x , is the number of moves that the machine takes form the start of the 
computation with this input, to its termination. The (memory) space, denoted by 
space ( )M x , is the number of tape cells of the working tape visited during the 
computation. This is the formal definition of “time” and “space”. But in the following, 
for any deterministic algorithm A , we simply write as time ( )A x and space ( )A x referring 
to the time and space used by A  on input x . By these we formally mean the time and 
space of some det. TM that “appropriately” implements the algorithm A . Note that, 
however, one does not have to always implement a given algorithm as a TM for 
discussing, e.g., its computation time. Usually it is enough to describe the algorithm 
with one’s favorite programming language such as Pascal, C , etc, or with even less 
formal description. This is because it is tedious but conceptually easy to show that each 
instruction used in the description can be implemented as a sequence of a finite (or a 
small) number of TM’s moves. That is, the difference is within some constant factor and 
usually such difference can be ignored in the analysis. (It may be the case that running 
time differs by (log )O n factor between TMs and high level machineries.) 
 
Randomized Turing Machines (Randomized TMs) 
 
We can sometimes design an efficient algorithm if we are allowed to use “randomness” 
in the computation. In fact, researchers have proposed many efficient randomized 
algorithms, algorithms that make use of a random bit sequence, i.e., an outcome of coin 
flipping. Randomized Turing machine (randomized TM in short) is a formal model for 
such algorithms.  
 
A randomized TM is the same as a deterministic one except that it has a special state 
called a coin-flipping state. For the coin-flipping state (more precisely, for the 
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configuration having the coin-flipping state as the current internal state), we can define 
two different moves. Then in the execution, one of these two moves is chosen as an 
actual move randomly with the same probability. Due to this randomness, randomized 
TM M may execute differently on the same input x . We call each possible execution a 
computation path of M on input x . Notice that a computation path is uniquely 
determined if we fix the choices (of moves) made during the execution; furthermore, 
these choices can be specified as a binary string, i.e., a sequence of 0 and 1. Thus, we 
often identify one computation path with a binary string that defines this computation 
path. Intuitively, a random bit sequence used by a randomized algorithm corresponds to 
one of these binary strings.  
 
In general, the output ( )M x of the randomized TM M on input x is a random variable, 
and it may not be what we want; that is, M may make an error. The error probability of 
M  on x  is the probability that ( )M x  does not output the correct answer, including the 
case that ( )M x  does not stop. Clearly, a machine is useless if its error probability is 
large, and thus, for randomized TMs, we consider only machines whose error 
probability is within some bounds. In particular, for decision problems, the following 
three types of machines are usually considered. (In the following, let X be any decision 
problem and let ε be any constant <1/2. Recall that we also use X to denote the set of 
‘yes’ instances of the problem X . Each condition is also the definition of the notion 
“ M solves X ” for the corresponding machine type. By “ ( ) ?M x = ” we mean that the 
machine enters some special halting state indicating ‘no answer’.) 
 
Bounded error TM:  
for any input , { ( ) yes} ,PrMx x X M x⇒ ≠ <∈ ε  
           Pr { ( ) no} ,Mx X M x⇒ ≠ <∈ ε  
One sided error TM: 
for any input , { ( ) yes} ,PrMx x X M x⇒ ≠ < ε∈  
           Pr { ( ) no} 0.Mx X M x⇒ ≠ =∈  
Zero error TM:  
for any input , { ( ) ?} ,PrMx M x = < ε  

           
{ ( ) yes or ?} 1,
{ ( ) noor ?} 0.

Pr
Pr

M

M

x X M x
x X M x

⇒ = =

⇒ = =

∈
∈

 

 
The choice of ε is not essential in most cases because one can reduce error probability 
by a constant factor by executing M a constant number of times. The last condition is 
called “zero error” because one can always get the correct answer by iterating M ’s 
execution until a yes/no answer is obtained.  
 
Running time and memory space may also differ depending on an actual computation 
path executed. We can simply use the worst one for time ( )M x  and space ( )M x . 
 
Nondeterministic Turing Machines (Nondet. TMs) 
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In computational complexity theory, researchers have also introduced machines models 
that do not have any realistic computational devices. Such machine models are defined 
for studying some class of problems that share a certain computational property. The 
nondeterministic Turing machine (nondet. TM in short) is a typical example.  
 
As computational devices, nondet. TMs are the same as randomized TMs, but the coin 
flipping state is called here a nondeterministic state, and its interpretation is different. 
When entering the nondeterministic state, we consider that two moves are executed 
simultaneously. In other words, in the execution of a nondet. TM, all computation paths 
are executed in parallel. We also require a specification of how to interpret the 
machine’s output from the outputs on these computation paths.  
 
The interpretation is simple for decision problems. (Nondet. TMs are usually used for 
decision problems.) For any nondet. TM M  and for any input x , we consider that M  
outputs ‘yes’ on x  if ( )M x = yes on some computation path. Otherwise (i.e., if no 
computation path yields a yes answer), then we think that M  outputs ‘no’ on x . This 
way of executing a nondet. TM and interpreting the outputs on computations paths is 
called nondeterministic computation. 
 
There are two important remarks on the nondet. TM model. We should not regard this 
model as a model for parallel computation. This is because the degree of parallelism, i.e., 
the number of processors to achieve the parallel computation, easily goes far beyond 
any realistic level. Furthermore, the nondeterministic computation is a quite limited type 
of parallel computation. Thus, it is more natural if we consider nondet. TM as a model 
for defining some classes of problems sharing a certain property (see Section 3). Further, 
nondeterministic computation is not symmetric. That is, the case that a machine outputs 
‘yes’, and the case that a machine outputs ‘no’ are not symmetric. Thus, from a nondet. 
TM M  for some problem X , we cannot make a nondet. TM for the complement 
problem X by simply exchanging its accepting and rejecting states. 
 
Running time and memory space are defined in the same way as randomized TMs. That 
is, time ( )M x  (resp., space ( )M x ) is the longest time (resp., the largest space) used 
among all computation paths of M  on x .  
 
Families of Boolean Circuits (Circuits) 
 
Boolean circuits (circuits in short) are used to investigate the running time of parallel 
algorithms. They are also used as a combinatorial model of computation.  
 
A Boolean circuit is a directed acyclic graph. Nodes of the graph, which are called gates, 
are classified into four types. Nodes with no fan-in edge are input gates. The other 
nodes are either AND, OR-, or NOT-gates. Nodes with no fan-out edge are also called 
output-gates. We use n to denote the number of input gates. Circuits for decision 
problems have only one output gate. NOT-gates have only one fan-in edge. On the other 
hand, AND- or OR-gates may have any number of fan-in edge, but unless explicitly 
specified, we assume that AND- and OR-gates have two fan-in edges.  
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A circuit C with n input gates is used to express computation on input strings of 
length n . That is, for a given string x  of length , ( )n C x , the output of C on input x , is 
the value obtained at its output gate when the circuit is evaluated by assigning the i-th 
bit of x  to the i-th input gate. Since each circuit can take care of strings of some fixed 
length, the whole computation is represented by a family 0{ }n nC ≥  of circuits, where 
each nC is a circuit with n  input gates. If there is no restriction, then there need be no 
regularity between the circuits in 0{ }n nC ≥ , and then there may be no way to construct 

nC  from n . Due to this, a family of circuits is generally called a nonuniform 
computation model. On the other hand, we can restrict circuit families so that each 
member is constructible from a given size by some resource-bounded det. T.M. Such 
circuit families are called uniform families of circuits. For example, in order to give a 
relation to actual parallel computing devices, log-space uniformity is often assumed. 
But in many cases, the uniformity issue is not explicitly stated because it is either not 
necessary or easily obtained in the argument. In this chapter, we will also omit 
mentioning uniformity.  
 
For the circuit model, we measure computational resource by “depth” and “size”. The 
depth of a circuitC , which we denote as depth ( )C , is the length of the longest path 
from an input gate to the output gate ofC . The size ofC , size ( )C , is the total number of 
AND-, OR-, and NOT-gates. It is intuitively clear (and in fact, probable in some 
settings) that circuit depth corresponds to parallel running time. On the other hand, 
circuit size corresponds to the combination of the time and space resources of sequential 
algorithms.  
 
We have seen several machine models and resources defined on them. Now we explain 
the way to evaluate a given algorithm’s performance as a total. Here for our example, 
we consider a deterministic algorithm A  and time ( )A x . 
 
As explained in the introduction, we evaluate the efficiency of algorithms in terms of 
input length. But even if we fix input length n , there are many input strings of length n , 
and A ’s running time usually varies depending on an actual input string. In 
computational complexity theory, we usually choose the worst-case criteria and define 
the worst-case time complexity of A  as follows.  
 
time ( ) max{time ( ) | {0,1} }n

A An x x= ∈ . 
 
A function like time ( )A n  is called a time complexity (function). Clearly, the worst-case 
criterion is not our only choice, and it is not always the best choice either. For example, 
there are cases that the average-case analysis is more appropriate. But since the average-
case analysis is usually complex, and it is even more difficult to provide a simple and 
appropriate framework for studying the average-case complexity, average-case 
complexity has not been studied until recently (see Section 5). 
 
In complexity theory and analysis of algorithms, researchers have mainly studied the 
asymptotic behavior of complexity functions, by ignoring constant factors and minor 
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terms of complexity function. This is because even asymptotic complexity is hard 
enough to analyze, and furthermore, with our rough machine models it is often 
meaningless to discuss constant factors of complexity functions. Thus, for stating 
complexity functions, we usually use big-O notation, the way to describe functions’ 
asymptotic behavior while ignoring constant factors. Here we recall the meaning of the 
big-O notation.  
 
Definition 1 For any functions f  and g  from +Z  to +Z , we write ( )f O g=  if the 
following holds for some constant 0c  and 0n 0 0[ ( ) ( )]n n f n c g n∀ ≥ ≤ ⋅ .  
 
Note that the big-O notation does not imply the asymptotic equivalence between two 
functions; it just means that one function is asymptotically bounded from above by 
another function. Thus, we can write ( )f O g= , for example, for ( )f n n=  

and ( ) 2ng n = . 
 
- 
- 
- 
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