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Summary 
 
The subject of this article is probabilistic systems generalizing the usual−  “classical” −  
probability theory and requiring less information to formulate a probability statement. 
An important example of such a system is provided by interval-valued probability 
allowing for ( )P A = [0.2; 0.3] and similar propositions. While from a theoretical 
standpoint all empirical knowledge must be of restricted accuracy, the practical 
relevance of such systems can be recognized in many fields: 
 

(1) in classical statistics for instance, as soon as confidence regions are to be 
included  in further models; 

(2) in artificial intelligence, as soon as it is realized that the experts’ knowledge is 
not sufficient to justify classical probabilities; 

(3) in insurance, if the inhomogeneity of the ensembles used is considered;  
(4) in science and technology, as soon as the inevitable measurement errors are  

taken into consideration; 
(5) in all behavioral sciences, if modeling is to be realistic. 

 
Up to now a considerable number of approaches − partially comprehensive − appeared 
to meet these requirements. However, in large parts of the scientific community the 
problems described are neglected or met by short-cut methods. In the near future 
growing attention to this subject can be expected.  

1. Introduction 

During the last decades of the 20th century a considerable number of proposals were 
made to support the customary (“classical”) theory of probability by other methods of 
describing and handling situations of uncertainty. For all of these proposals the 
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justifications are similar, arguing that in many situations of practical relevance the 
requirements for an employment of classical probability calculus are not given.  
 
Three classes of proposed methods to deal with uncertainty can be distinguished: 
 

1. methods avoiding the concept of probability altogether; 
2. methods which originally rely on the concept of probability, but eventually 

contradict the classical theory; 
3. methods based on generalizations of the classical theory; in suitable circumstances 

they become classical ones. 
 
While it is obvious that systems producing methods of class 3 have to be included under 
the heading “Alternative Probabilistic Systems” and not the concepts related to methods 
of class 1, those systems on which methods of class 2 rely must be seen as border cases. 
Therefore their description will be distinguished form that of systems containing 
classical theory as a special case.  
 
Consequently in this article neither the systems MYCIN and E-MYCIN are described 
nor those based on fuzzy logic and employing the concept of membership functions. On 
the other hand the methods of classical statistics to gain evidence about membership 
functions on the basis of random sampling may be regarded as a kind of alternative 
probabilistic system. This methodology was described by Viertl (1996). 
 
Beyond the scope of the present contribution remain the deviations between the concept 
of classical probability on one side and the concepts of probability as used by quantum 
physicists on the other. Only recently one of them admitted: “Of course, quantum 
probability calculus gives useful and convenient description of quantum phenomena. 
However, quantum probability has no direct connection with probability. This is just 
rather speculative use of the word ‘probability’ in some formal mathematical 
constructions.” (Khrennikov, 1999, p. 7) 

2. Early developments 

Already in the 19th century doubts were expressed whether classical probability can be 
seen as the sole means of describing situations of uncertainty (Boole Peirce). About 
1920 J.M. Keynes as well as F.H. Knight gave strong arguments against the traditional 
attitude: Keynes emphasized the possibility of hypotheses h andk , where neither h is 
more probable than k nor k is more probable than h nor both are equal in probability. 
Knight with respect to economic situations distinguished the concepts of risk and 
uncertainty, employing the random draw of a ball out of an urn as an example for a 
situation of risk if the composition of the urn is known exactly, and as an example for 
the situation of uncertainty if this is not true. 
 
During the Second World War two concrete proposals of using imprecise probabilities 
were made. In 1940 and 1941 B.O. Koopman presented the concept of interval-valued 
probability by defining upper and lower probabilities for conclusions via comparisons 
of their probability with those showing known classical probability. Often his articles 
are regarded as the origin of calculus of interval-valued probability. Quite independently 
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in 1943 E. Borel in his book “Les Probabilités et la Vie” discussed the conditions of 
offering a wager and accepting a wager under realistic situations. If the probability of 
the crucial event A  cannot be determined exactly, he argued, it is rational behavior to 
use the lowest value of this probability when deciding whether to accept the wager on A , 
but to rely on the highest one when fixing the odds at which to offer a wager on A . The 
influence of Borel’s conception can be seen in many contributions to come.  
 
During the early 1960s interest in lower and upper probability grew remarkably. In 1960 
C.A.B. Smith gave a lecture to the Royal Society, which was printed in 1961. Following 
the line of Borel he defined “lower pignic odds” as the upper bounds on the odds 
leading to acceptance of the bet and “upper pignic odds” as the smallest ones allowing 
the offer of this bet. Pignic odds determine lower and upper probabilities and therefore 
they define the set of “medial probabilities” between: interval-valued probability. In 
1962 I.J. Good took up Koopman’s approach applying it to personalist probability of an 
event: Due to necessary limitations of our knowledge only upper and lower constraints 
to the “perfect” value of the probability can be given. His system of axioms is similar to 
that of Koopman. 
 
Since 1961 the motivation to employ interval-valued probability was grounded on 
fundamental reasoning by Henry E. Kyburg Jr.: Rational belief must be determined 
objectively, and empirical belief therefore must be based on statistical knowledge which 
never can be precise. Even strongest possible statements must contain lower and upper 
limits of probability. Since 1961 Kyburg stressed this argument several times.  
 
Of special importance for the treatment of uncertainty in microeconomics was the report 
given by D. Ellsberg in 1961. Reactions to L.J. Savage’s “Foundations of Statistics” of 
1954 new discussions among economists came up about the use of (classical) 
probability in describing any situation of uncertainty. Ellsberg undertook testing the 
practicability of Savage’s axioms under special conditions. In one of his experiments he 
asked economists to choose between two different settings: A prize was to be given, if a 
ball randomly selected from an urn had a certain color − but there was partially 
restricted knowledge about the composition of the balls in the urns. He reported, that 
situations exist, under which a vast majority of economists through their decisions 
violate the rules of classical probability, especially the law of additivity and Savage’s 
“sure thing-principle”. This result is widely known under the name “Ellsberg-paradox”. 
He proposed the expression “ambiguity” to characterize aspects responsible for this 
violation − like that caused by the lack of information on the exact composition of the 
urn in his experiment. In the sequel the concept of ambiguity has provoked a series of 
theoretical as well as empirical investigations. 
 
Most of Ellsberg’s results may be explained by assuming that an agent rationally 
decides, as if among all classical probability assessments not explicitly excluded by his 
information that one were true which is worst for his interest. This strategy can be 
identified with the application of the minimax-principle to the set of possible classical 
probability assessments. It is in agreement with Borel’s recommendation for behavior in 
dealing with a wager and Smith’s concept of pignic odds. This concept was seen as a 
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promising decision-theoretical approach to imprecise probability. It was named Γ-
minimax-strategy and described by many authors.  
 
On the other hand, Ellsberg himself had warned against assuming general validity of 
this principle. His simple and convincing argument rests on the description of an 
example where there is choice between two settings, each of them promising the same 
prize provided that a random draw out of an urn produces a red ball. One of the settings 
employs urn 1 with a composition totally known: The proportion of red balls is >p 0 . 
The other uses urn 2, where the composition is unknown: The proportion of red balls 
can have any value between 0 and 1. For every >p 0 , the Γ-minimax strategy requires 
to choose the setting with urn 1, since in the worst case for the decision-maker there are 
no red balls at all in urn 2. But Ellsberg stresses that every one in fact will switch to the 
setting with urn 2, provided that p  becomes sufficiently small. Under the given 
circumstances choosing urn 1 would make it practically sure: no red ball, no prize. 
Choosing the other setting leaves the hope that the composition of urn 2 is more 
favorable for the decision-maker. This example demonstrates that none obeys Γ-
minimax-strategy unconditionally. For many years Ellsberg’s warning appeared to have 
been generally neglected, although there exist large classes of strategies explaining his 
results at least as well as Γ-minimax does 
 
- 
- 
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