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Summary 
 
Chance mechanisms are part of the surrounding world. Life-supporting systems, in 
particular, have many built-in stochastic aspects. Some of these are mentioned here as 
illustrations and to put them into a global framework. The statistical methodology 
needed to deal with them is taken up in greater detail in later sections. In order to put the 
developments in their proper context, a short history is given of the evolution of 
probabilistic and statistical thinking up until the early twentieth century. 

2B1. Introduction: Chance Mechanisms 

There is a wide variety of contexts in which the concept of chance and/or probability 
has been used. The following examples are meant to indicate to the reader that 
probabilistic concepts are sometimes hidden in real life situations. 
 
 
1.1. Divination 
 
From ancient times, chance mechanisms have been used in divination. The flight of 
birds and the intestines of offerings are prime examples. Chance mechanisms have also 
been used in divination in the Bible. Leviticus ch. 16, vv. 5–10, for example, tells how 
Aaron cast lots over two goats to decide which one should be dealt with as an atonement. 
In present-day Shinto temples, the visitor is offered a box with a large number of long 
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sticks. The visitor is expected to shake the box till one of the twigs sticks out. The stick 
will correspond to a specific fortune printed on a piece of paper which is retained if the 
fortune is a good one. If it is not, the piece of paper is fastened to a tree or a fence in the 
neighborhood of the temple. 
 
1.2. Dispute Solving 
 
Drawing straws when assigning duties is a typical instance of using chance mechanisms 
in daily life. The toss of a coin at the beginning of various games decides which team 
should start playing on which half of the field. In the Talmudic tradition the allocation 
of daily duties in the temple is organized by a randomization procedure. 
 
1.3. Games 
 
This is probably the best known and most popular application. 
 
• The tomb of Tutankhamen contained a beautiful checker-like game—“Hounds and 

Jackals”—intended to help the deceased arrive safely on the other side. Successive 
steps on the squares of the game by the hounds and the jackals were decided by 
throwing astragali (made from the hard part of the foot of certain animals) or long 
flat two-sided sticks. 

• The throwing of dice controls most pastime family games. Needless to say, all card 
games like whist and bridge are based on the random allocation of cards. 

• Here is an example from an unexpected angle. In the eighteenth century sheet music 
was still rather expensive. In order to enable the common people to play music, 
classical composers like Haydn, Mozart, Kirnberger, and Emmanuel Bach amused 
themselves and their clientele by composing minuets, marches, waltzes, and so on. 
In these pastimes, previously written musical figures are provided by the compiler 
of a game: the player chooses the music for each measure by throwing dice, 
spinning a top, or choosing a number at random. Random mechanisms are also 
advocated in contemporary music in aleatoric composition. 

 
1.4. Gambling 
 
Most people will be unaware that the early development of the scientific theory of 
probability was greatly influenced by gambling. The next section illustrates this with 
more concrete examples. Gambling, from which present-day casinos have emerged, 
seems to have been one of the oldest human pastimes. Apart from the one-armed bandit 
or slot machine, most casino games (like roulette, baccarat, and craps) are sufficiently 
standardized for the probabilities of winning to be known exactly.  
 
Lotto and lotteries also fall into this category since the drawing mechanisms are so 
refined that no specific outcomes are more likely than any others. In this sense, the 
above casino games and lotteries are perfect games of chance. For a few other casino 
games (like blackjack), specific strategies have been developed that are more favorable 
than random playing. Up to a certain extent, they can be considered as needing some 
form of skill. 
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1.5. Scientific Evidence 
 
As another illustration of the use of chance mechanisms, one could give a vast number 
of applications from statistics. Here are a few less usual examples. 
 
• The existence and measurability of telekinesis has been a touchy subject. In a 

number of cases, experiments have been described and analyzed that should 
determine once and for all whether or not telekinesis exists. Outcomes of such 
experiments with a medium are compared with expected outcomes under random 
circumstances. Substantial differences between the two sets of outcomes should then 
indicate some unexplainable capability of the medium. 

• Since its scientific maturity, probability theory has been invoked in lawsuits. A 
number of examples will be given in later sections. If one combines a sufficient 
number of external properties of individuals and if it is taken as given that these 
characteristics are independent, then it is always possible to come up with somebody 
unique. A famous example is the People versus Collins case in which such a set of 
independence hypotheses between different events was used. 

• More recently, legal verdicts have been based on DNA investigations. The 
forerunner of this procedure in forensic studies was the evaluation of fingerprints. 
From delicate calculations, scientists have discovered that specific replications in 
DNA patterns are so unlikely that they can hardly appear in two different creatures. 

3B2. Early Concepts of Probability 

The emergence of probabilistic concepts has been slow and unclear. One should not 
make the mistake of looking at historic facts with modern eyes. Most people by now 
have some feeling of the frequentist concept of probability. To be more specific, the 
probability of a certain event E in a random experiment is approximately the ratio of the 
frequency that E appears in independent repetitions of the experiment to the number of 
repetitions. This interpretation however is of rather recent origin. 
 
2.1. Ancient Times 
 
It is noteworthy that the Greeks valued certain throws of astragali higher than others, 
irrespective of their relative probabilities. Presumably, the odd shape of these astragali 
made estimation—a modern concept!—of the relevant probabilities impossible. As 
suggested by historians, the use of astragali and the drawing of lots in divination may 
have prevented a scientific study of the outcomes of games of chance for religious 
reasons. 
 
2.2. Renaissance 
 
It took until the middle of the seventeenth century before gamblers started to notice 
measurable differences between events that have nearly the same probability of 
occurrence. For example,  Galileo wrote a paper on the observation that dice players 
consider 10 to be more advantageous than 9 when throwing three dice simultaneously. It 
can be shown by enumeration that the probability of 10 is 27/216 while that of 9 is 
25/216. Modern statistics tells us that one needs very sizable experiments to prove 
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statistically that 9 and 10 are not equally likely. 
 
In Europe, the making of playing cards was established by the fifteenth century. 
However, cards were expensive and thus only the wealthy could afford to buy them. 
There was a tendency among scientists to formulate probabilistic problems in terms of 
games. In the sixteenth century and even later, only people of substantial means in terms 
of time and money could afford to spend their energy on scientific questions. They were 
also familiar with gambling terminology for the same reason. 
 
Present-day probability texts often state problems in terms of urn models where the 
experimenter is asked to draw balls from urns with a given composition. This is very 
much like stating them in terms of gambling, which might be less familiar to many 
people. Urn models have the additional advantage that, depending on the specific type 
of application, the number of urns and their composition can often be easily interpreted. 
For example, urn models have been of standard usage in modeling the impact of 
contagious diseases in populations; also, basic and important concepts about dependent 
trials are often illustrated using urns with changing compositions. 
 
2.3. The Problem of Points 
 
From about 1500 Italian mathematicians tried to solve the following problem, known as 
the “problem of points” or the “division problem”: two players, A and B, agree to play a 
series of fair games until one of them has won a specified number of games, s say. The 
game is interrupted when A has won a (< s) games while B has won b (<s) games. How 
should the stakes be divided? 
 
The problem of points is probably the most significant instigator of probabilistic 
thinking. The problem itself is, of course, only one link in a long chain of successive 
findings. However, because of its prime importance within the development of the 
origins of probability theory, it deserves special treatment as a trendsetter. 
 
The problem of points, or division problem, seems to be a very old one, and already 
appears in 1494 in the writings of Lucia Pacioli (ca. 1445–ca. 1514) for the case a = 5, b 
= 2 and s = 6. His suggestion is to divide the stakes in the ratio a/b. There is no 
probabilistic or combinatorial thinking behind his reasoning. 
 
In 1556 Niccolo Tartaglia (ca.1499–1557) criticizes Pacioli and suggests a ratio (s + a – 
b)/(s – a + b) if the stakes are equal. Again no scientific reasoning is provided. L. 
Forestani (?–1623) reasons in 1603 that Pacioli’s proportion should be corrected. His 
view is that, allowing for chances in the games that are not yet played, fortune may be 
reversed. He suggests the ratio (2s – 1 + a – b)/(2s –1 – a + b) where 2s –1 is the 
maximum number of games that could be played anyway. 
 
Girolamo Cardano (1501–1576) is the first to note (1539) that the division should only 
depend on the number of games each player is lacking in order to win, that is to say, on 
the quantities m = s – a and n = s – b. Using a kind of obscure inductive argument 
Cardano settles for the ratio n(n + 1) over m(m + 1). It should be mentioned that 
Cardano wrote the influential De Ludo Aleae, a treatise on the moral, practical, and 
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theoretical aspects of gambling with dice. He clearly states that all six sides of an honest 
dice are equally likely to be thrown, and he introduces chance as the ratio between the 
number of favorable cases and the number of equally possible cases. 
 
The problem was ultimately solved in a fascinating correspondence between Pierre de 
Fermat (1601–1665) and Blaise Pascal (1623–1662) between July and October 1654. In 
modern terminology, the division should be done according to a proportion. This ratio 
should be the same as the ratio of the probabilities of winning the whole stake for each 
one of the players, if the game was played till the end. Through the construction of his 
famous arithmetic triangle, Pascal gives an explicit expression in a form that is rather 
too complicated to be written out here. It should be mentioned that Pascal gave a second 
solution, this time based on recursions. Fermat also had a solution but he employed a 
waiting-time argument to solve the problem in its full generality. 
 
Christiaan Huygens (1629–1695) visited France in 1655 and heard about the problem of 
points. Not having access to its solution, Huygens solved the problem on his return to 
Holland. His 16-page manuscript Van Rekeningh in Spellen van Geluck (On Reckoning 
in Games of Chance) is considered to be the first printed treatise on probability theory. 
From an axiom on the value of a fair game, Huygens derives 14 propositions. The first 
three can be considered as founding the definition of what is now called “mathematical 
expectation.” Proposition 4 solves the problem of points. In his last proposition he even 
anticipates the use of conditional expectations. Huygens’s booklet was immediately 
translated into Latin in 1657 and a variety of other languages. It gained wide popularity 
as the only textbook prior to 1700. 
 
2.4. Other Problems from Gambling 
 
As has already been said, most scientists were familiar with the language of gambling, 
and, in this respect, the problem of points is no exception. Another such problem is that 
of the “duration of play.” It was suggested by Huygens and goes as follows: two players 
A and B have probability p and q respectively of winning a game. At the beginning of 
the game A has a coins while B has b coins. The loser in each round has to give one 
coin to his opponent. What is the probability that A will lose all his capital before 
winning the whole capital of B? An associated question is the determination of the 
average number of games played before A or B is ruined. 
 
This problem became famous in risk theory where it is known as the “classical ruin 
problem.” As a limiting case, B is often taken to be a casino when the initial capital b is 
considered very large. De Moivre has given a full solution of the duration problem. 

4B3. The First Steps Towards a Theory of Probability 

Rapid development becomes apparent in the early years of the eighteenth century. 
3.1. New Contributions 
 
The publication of the Essay d’Analyse sur les Jeux de Hazard (1708) by Pierre 
Rémond de Montmort (1678–1719) was the first testament in the eighteenth century to 
an explosion of activity and competition. Referring as it does to an earlier observation 
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about gambling, it is not surprising that the fourth part of de Montmort’s book contains 
solutions of various problems dealing with games. 
 
A second key publication was the Ars Conjectandi (1713) by James Bernoulli (1654–
1705). The first part of this book is actually a comprehensive and annotated edition of 
Huygens’s treatise. Further, Abraham de Moivre (1667–1754) published The Doctrine 
of Chances in 1718. This became the standard text for the remaining part of the century, 
to be superseded only in 1812 by Laplace’s Théorie Analytique des Probabilités. The 
correspondence between Montmort and Nicholas Bernoulli (1687–1759), James’s 
nephew, was also influential and appeared in the second edition of Montmort’s book in 
1713. 
 
3.2. Still More Gambling Problems 
 
Nicholas Bernoulli’s name is associated with another problem from gambling, the game 
known as Treize or the “matching problem.” Two players A and B each have a complete 
deck of n cards. Both draw cards simultaneously and one by one. If they match then A 
wins and if there is no match B wins. The problem is to determine the probability of 
winning for each of the two players. 
 
It is easy to check that with three cards A has probability 2/3 while B only has 
probability 1/3. It takes a bit of effort to solve the problem for n = 4 where A has 
probability 5/8. Nicholas Bernoulli gave the general solution for finite n while de 
Moivre treated the case where n = ∞. In this case, the result involves the quantity e, the 
base of the natural logarithm. In current literature, the problem is known as the 
rencontre game and falls under the heading of “secretary problems.” 
 
Yet another problem from gambling had a very profound influence on the development 
of probability theory. It was also formulated by Nicholas Bernoulli but treated by Daniel 
Bernoulli (1700–1782) in a paper published by the St. Petersburg Imperial Academy of 
Sciences, which is why it entered the literature as the “St. Petersburg paradox.” The 
game goes as follows: two players A and B toss a coin till it first comes up heads. 
Player B has to give two coins to player A if it comes up heads on the first toss, four 
coins if it is first heads on the second toss, eight if on the third, and so on. The question 
is to determine the amount that A should pay B at the start of the game to make it fair. 
 
According to Huygens’s rules for the mathematical expectation, the game can only be 
fair if A pays the same number of coins as B is expected to pay. At the nth play, this 
expectation is 2(1/2) + 4(1/4) + … 2n(1/2n) = n. This means that, when no primary 
restriction is put on the number of plays, the game can only be fair if A pays an infinite 
amount to B. It is hard to imagine now how this kind of “solution” would have been 
received by the solver’s contemporaries. Since its appearance in 1738 the St. Petersburg 
paradox has been the subject of an incredible number of scientific, philosophical, and 
also popular contributions. 
 
Isaac Newton (1642–1727) could also be mentioned in connection with the early history 
of probability for solving a dice problem for Samuel Pepys in 1693. More intriguing is 
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his tacit understanding of a confidence interval for the arithmetic mean when he stated 
that the mean length of a king’s reign is “about eighteen or twenty years apiece.” 
 
- 
- 
- 
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