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Summary 
 
A Markov process is characterized by the property that, given the value of the process at 
a specified time, the past and the future of the process are conditionally independent. 
The simplest examples of Markov processes are the ones for which either the set of 
possible values of the parameters or the set of possible states (or both) is at most 
countable, the so-called Markov chains. Their discussion leads to a number of basic 
concepts, which are then extended to the general case. In particular, this leads to the 
definition of the transition function and the transition operators of a Markov process, 
and to the infinitesimal operator. An important set of questions is studied next, namely 
how path properties of the process can be deduced from properties of the transition 
function or the infinitesimal operator. Finally, the results obtained are applied to a few 
examples.  
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1. Introduction 

1.1. The Markov Property and the Transition Function  
 
Markov process can be viewed as a generalization of the notion of independent random 
variables. They are characterized by the Markov property which states that the 
conditional distributions of the past and the future, given the present, are independent. 
In order to give a formal definition, let T be a subset of the real line (either a finite or 
infinite interval or the intersection of one of those with the integers; in the sequel, it will 
be assumed that the left endpoint of this interval is0 ); T is called the parameter space of 
the process. Furthermore, let ( ( ), )t t Tξ ∈ be a stochastic process (i.e., a collection of 
random variables indexed byT ) taking values in some subset X of a Euclidean space; 
usually, this space- the state space – will be the real line. One can consider more general 
state spaces, but this generates some additional (mostly technical) difficulties, and will 
be avoided in this exposition. The stochastic process (.)ξ is called a Markov process if 
for all 
 

1 2 1n ks s s t t t< < < < < < <… …  (1) 
 
and  
 

1 1,... , ,...,n kA A B B ∈B  (2) 
 
it holds with probability one that 
 

( ( ) , , ( ) , | ( ))i i j js A i n t B j k t≤ ≤ =P ξ ξ ξ∈ ∈  (3) 
 

( ( ) , | ( )) ( ( ) , | ( ))i i j js A i n t t B j k t≤ ≤P Pξ ξ ξ ξ∈ ∈ . 
 
There is a number of equivalent definitions in the literature. All of them are just clever 
ways of saying that given the value of the process at time t , an event defined in terms of 
the values of the process before t and one that is defined in terms of the values of the 
process after t are conditionally independent. One that is very important because it is the 
simplest to verify is the following: for 1 2 ns s s t< < < <…  
 

1( ( ) | ( ),..., ( )) ( ( ) | ( ))n nt B s s t B s=P Pξ ξ ξ ξ ξ∈ ∈ . (4) 
 
If the parameter space is a subset of the integers, the Markov process is traditionally 
called a Markov chain A case of special interest is given by the discrete Markov chains; 
for these the state space, too, is at most countable, which make their analytic treatment 
fairly simple. 
 
Another important special case is that of a Markov process with a continuous parameter 
(the parameter space is a whole interval) and a discrete (i.e., at most countable) state 
space. These processes are often called continuous parameter (or continuous time) 
Markov chains (or, putting emphasis on the discreteness of the state space, “discrete 
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Markov chains in continuous time”). The most important notion in the theory of Markov 
processes is the transition function of the process: a function 
 

( , , , ) , , , ,P s x t B s t T s t x X B≤∈ ∈ ∈B  (5) 
 
is called the transition function of the Markov process (.)ξ if the following conditions 
hold true: 
 
1. For , ,s x t fixed, the function ( , , ,.)P s x t is a probability measure onB . 
 
2. For fixed , ,s t B the functions ( ,., , )P s t B is measurable. 
 
3. It holds that ( , , , ) ( )xP s x s B B= δ , the measure that assigns mass 1 to the point x . 
 
4. For any ,s t B< ∈B , the following equation holds with probability one:  
 

( ( ) | ( )) ( , ( ), , )t B s P s s t B=P ξ ξ ξ∈ . (6) 
 
The question of the existence of a transition function is somewhat hard, and for general 
Markov processes, a transition function need not exist. In the case considered here – the 
process taking values in some Euclidean space – there is always a transition function.  
 
The transition function can be interpreted in the following way: ( , , , )P s x t B is the 
probability that the Markov process will be in the set B at time t , if it starts from x at 
time s . If this idea is followed a little further, one arrives at the notion of a family of 
Markov processes, or for short, a “Markov family”: this is just the collection of all 
Markov processes with a given set of transition functions, and started at different times 
and states. More precisely, suppose that for each s T∈ and x X∈ , there is a probability 
measure ,s xP on the σ -algebra generated by the set of random 
variables ( ( ), [ , ))t t T s ∞ξ ∈ ∩ . The collection of probability measures ,( )s xP is then called 
a Markov family with transition function (., ., ., .)P if the following three conditions are 
fulfilled: 
 
1. The process ( ( ), [ , ))t t T s ∞ξ ∈ ∩ is a Markov process with respect to the probability 
measure ,( )s xP . 
2. This process has (., ., ., .)P as its transition function.  
3. It starts in x at time s : 
 

, ( ( ) ) 1s x s x= =P ξ . (7) 
 
Now, there is the question of whether a given function (., ., ., .)P is the transition 
function of a Markov family. First, observe that the finite-dimensional distributions of 
the process can be calculated in terms of the transition function. In fact, 
for 1 ns t t< < <… , it holds that 
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, 1 1( ( ) ,..., ( ) )s x n nt A t A =P ξ ξ∈ ∈  (8) 
 

1 1
1 1 1 1 2 2( , , , ) ( , , , )

nA A
P s x t dx P t x t dx

−
∫ ∫" …  

 
2 2 1 1 1 1( , , , ) ( , , , )n n n n n n n nP t x t dx P t x t A− − − − − − . 

 
Now, by Kolmogorov’s extension theorem, one can construct a process with these 
finite-dimensional distributions if and only if they are consistent, i.e., if one adds the 
conditions  
 

1( ) ,..., ( )ks sR Rξ ξ∈ ∈  (9) 
 
in the probability on the left-hand side of (8), then the integral on the right-hand side 
must not change. This condition is equivalent to the Chapman-Kolmogorov equation  
 

( , , , ) ( , , , ) ( , , , )( )P s x t A P s x u dy P u y t A s u t= < <∫ .    (10) 

 
If one considers only a single Markov process instead of a Markov family, the above 
argument gets just a little more involved; first, one needs to supply the distribution 

0P of (0)ξ . This enters formula (8) in the following way: 
 
 

1 1( ( ) ,..., ( ) )n nt A t A =P ξ ξ∈ ∈        (11) 
 

1 1
0 0 0 1 1 1 1 2 2 1 1( ) (0, , , ) ( , , , ) ( , , , )

n
n n n nA A

P dx P x t dx P t x t dx P t x t A
−

− −∫ ∫ ∫R" … . 

 
The Chapman-Kolmogorov equations are still important – it is clear that they are 
sufficient for the existence of a Markov process with the given transition function. A 
necessary and sufficient condition is obtained by demanding that equation (10) is 
satisfied for almost all x (with respect to the distribution of ( )sξ ). Of particular 
importance are those Markov processes whose transition function is only a function of 
the difference t s− . In other words, one has 
 

( , , , ) ( , , , ) ( , , )P s x t A P s h x t h A P t s x A= + + = − ,    (12) 
 
which means that the dynamics of the process does not change if it shifted in time. Such 
a Markov process is called a homogenous Markov process, or a Markov process with 
stationary transition probabilities. This assumption is not necessarily a restriction; it is 
easily seen that from any Markov process one can obtain a homogeneous one by adding 
the parameter as an additional state variable. In Particular, if  
 

1( ) ( ( ), , ( ))dt t t= …ξ ξ ξ         (13) 
 
is a d-dimensional Markov process, then  
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1 1 1( ) ( ( ), ( )) ( ( ), , ( ), )d dt t t t t t+= =… …η η η ξ ξ      (14) 
 
is a homogeneous Markov process with transition function  
 

1 1 1 1 1 1( , ( , , ), ,{( , , ) : ( , , , })d d d d d dP y y y y t s x x x x y t s A+ + ++ − + −… … … ∈ . (15) 
 

2. Discrete Markov Chains 

Obviously, this depends on s and t only via t s− . 
 
In the sequel, only homogeneous Markov processes will be considered.  
 
The simplest examples of Markov processes are the Markov chains, both in discrete and 
continuous time. These will be studied next.  
 
As stated above, these are Markov processes for which both the parameter space T and 
the state space X are discrete; without loss of generality one can assume that they are 
equal to the set of natural numbers (or, for finite state chains, X may be a set of the 
form{1, , }n… , in which case the infinite matrices below reduce to ordinary square 
matrices). Furthermore, as stated above, the Markov chains studied here will be 
assumed to be homogeneous. The first observation one makes is that, since a discrete 
distribution is determined by the probabilities of the singletons, it is sufficient to define 
the transition function for those; let the transition probabilities be defined as  
 

( ) ( , ,{ }).ijp t P t i j=         (16) 
 
These can be written as a matrix 
 

( )( ) ( ( ))ij X XP t p t ×= ,        (17) 
 
the so-called transition matrix. He Using this, the Chapman-Kolmogorov equation can 
be written in the simple form 
 

( ) ( ) ( )P s t P s P t+ = .        (18) 
 
Denoting (1)P simply by P , one obtains from this  
 

( ) tP t P= .         (19) 
 
In addition, if ( )p t denotes the row vector with entries ( ) ( ( ) )ip t t i= =P ξ , then  
 

( ) ( ) ( )p s t p s P t+ = .        (20) 
 
Thus, the distribution of a discrete Markov chain is completely specified by its one-step 
transition Matrix P . 
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2.1. Classification of the State of a Markov Chain 
 
A state i is said to be a predecessor of another state j if there is a 0t > such 
that ( ) 0ijp t > , i.e., if it is possible that the process visits j some time in the future, if it 
starts at i . If j is also a predecessor of i , then i and j are said to communicate. This 
obviously constitutes an equivalence relation between the states of the Markov chain, 
and the set of states can be split up into the corresponding equivalence classes. Many of 
the properties that will be studied later are the same for all states in the same 
equivalence class. This type of property will be called a “class property”. 
 
A case of particular interest is that of a Markov chain whose states all communicate, or 
in other words, for which there is only one equivalence class. Such a chain is called 
irreducible. With many important questions, the general case can be reduced to a study 
of irreducible Markov chains. 
 
One instance f a class property is periodicity. The period d of a state i is the greatest 
common divisor of the set of all n such that ( ) 0iip n > . Now, if j and i communicate, 
there are numbers a and b such that ( )ijp a and ( )jip b are positive. This implies that  
 

( ) ( ) ( ) 0ii ij jip a b p a p b+ ≥ > ,       (21) 
 
and if ( ) 0jjp c > , then also 
 

( ) ( ) ( ) ( ) 0ii ij jj jip a b c p a p c p b+ + ≥ > .     (22) 
 
By the definition of the period, this implies that the period d of i is a divisor of both 
a b+ and a b c+ + , hence also of c . This holds for any c with ( ) 0jjp c > , so the period of 
i is a divisor of the period of j , and by reversing the roles of i and j , one finds that both 
periods are equal.  
 
If the period d of a class is different from zero (it can only be zero if it contains only 
one state i with 0iip = ), then it is readily seen that the class can be divided into 
d subsets 0 1, , dS S −… such that ijp is zero except for the case when ki S∈ and 1kj S∈ ⊕ for 
some {0, , 1}k d −…∈ , where ⊕ denotes addition modulo d . If the period of a class 
equals one, the class is called aperiodic. 
- 
- 
- 
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