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Summary 
 
A stochastic process can be considered either as a family of random variables, indexed 
by a subset T of the real numbers, the so-called parameter space, or as a random 
function, that is, a random variable taking values in some function space. Stochastic 
processes have important applications in many fields of science, including biology, 
physics, chemistry, and even finance. Basically, they can be viewed as models for the 
evolution of a (biological, physical, etc.) system in time, where the observed variable 
undergoes random changes. One can also consider more general parameter spaces, so 
that the stochastic process becomes a random function of more than one variable. This 
type of stochastic processes is usually called a random field. Sometimes one of the 
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coordinates of the parameter vector is interpreted as time, whereas the others are spatial 
variables; in this case, one speaks of a stochastic space-time model. The reason why 
random fields get special treatment is that many of the methods of the theory of 
stochastic processes rely heavily on the natural order of the (one-dimensional) 
parameter space, for which there is no easy replacement in higher dimensions.  
 
In order to understand a stochastic process, it is important to have a clear description of 
its dependence structure. There are many sensible ways to do this, and so in the study of 
stochastic processes, a number of special classes of processes evolved, each with its 
own particular methods. 

1. Introduction 

1.1. Basic Notions and Definitions  
 
In 1827, the British botanist Robert Brown observed that pollen grains suspended in 
water perform some form of rapid zigzag movement. He first attributed this movement 
to the fact that there was some kind of “live power” in those grains, which, after all, are 
a live organic substance. Yet, soon it turned out that a suspension of (lifeless) dye 
particles exhibited the same behavior, so it was obvious that this movement, which 
became popular under the name “Brownian motion”, was caused by some other 
phenomenon.  
 
In 1905, Einstein developed the first mathematical theory of Brownian motion, which 
was later awarded the Nobel Prize. His explanation was that the reason for the irregular 
movement of small particles is the thermal oscillation of the water molecules. As a 
Brownian particle gets hit by a molecule, it is displaced by a small distance, and the 
combined effects of a large number of such collisions result in the visible movement of 
the particle. So, as Brownian motion is caused by the random thermal oscillation of the 
molecules, it is obvious that the spatial position of the Brownian particle at a given time 
instance is a random variable, and the path of the particle should be considered as the 
graph of a random function of time.  
 
Thus, Brownian motion becomes one of the first examples of a random function, or, as 
the usual name is today, a stochastic process. Actually, one cannot really speak about 
“the” Brownian motion; in fact, there are a number of different mathematical models, 
and each of them has its particular merits and flaws. The most prominent among them is 
of course the one that goes back to Einstein’s work, and this is called the Wiener 
process, owing to the fact that Einstein’s model was later refined and extended by 
Wiener. Very often, the name “Brownian motion” is used as a synonym for the Wiener 
process, but it is better to make a clear distinction between the physical phenomenon 
and the particular mathematical model. The formal definition of the Wiener process is 
given in Construction of Random Functions and Path Properties. It has many desirable 
properties, and it will turn up as an example for many important types of processes.  
 
Since its beginnings in the first half of the last century, the theory of stochastic 
processes has developed into a large and important field of mathematical research. Its 
applications range from the study of physical phenomena like Brownian motion and 
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ferromagnetism over biological and chemical processes to the modeling of the evolution 
of stock exchange rates. 
 
Now, it is time to give a formal definition of a stochastic process. First, there are two 
sets: the parameter space T and the state space X . A stochastic process onT with values 
in X is simply a collection of random variables (ξ( ), )t t T∈ with ξ( )t X∈ for all T∈t . 
Usually, both X and T are subsets of the real lineR , the most common choices for 
T being (maybe infinite) intervals. If the set T is at most countable, thenξ is called a 
discrete parameter process, otherwise one speaks of a continuous parameter process. A 
similar distinction can be made for the state space. It is clear that a discrete parameter 
process reduces to a (finite or infinite) sequence of random variable.  
 
A different way of looking at a stochastic process is to consider it as a randomly chosen 
function (i.e. instead of picking an individual random ξ t( )value for each value of t , one 
randomly chooses the whole function ξ , and then gets the individual random variables 
by evaluating this particular choice of ξ at t ). This makes ξ a random element of some 
function space, and the particular instance of the process ξ that is observed is called a 
trajectory (or path) ofξ . 
 
For both the parameter space T and the state space X , more general choices are 
possible. If X  is a d -dimensional set, then ξ is called a multivariate process; this 
situation is quite common, and usually this doesn’t create any real difficulties compared 
to the one-dimensional case. For the parameter space, on the other hand, using higher 
dimensions results in a significant increase of technical and theoretical problems. Thus 
the theory of processes with a parameter space that is not one-dimensional has forked 
off as the theory of “random fields”. This will be discussed in a later section, and until 
then, all processes will be assumed to have a one-dimensional parameter space, in most 
cases one has ,T = ∞)0[ . In this one-dimensional setting, the parameter is often 
interpreted as a time variable, and in the sequel, the word “time” is used synonymously 
with the parametert . 

2. Important Concepts and Methods 

2.1. Dependency 
 
In probability theory, one of the most basic concepts is that of a sequence of 
independent random variables. This would suggest that a simple example of a stochastic 
process would be one that has all the random variables ξ t( ) independent. It turns out, 
however, that such a process doesn’t have very nice properties. In particular, its 
trajectories are not continuous, not even measurable. Still, such processes are sometimes 
considered as so called white noise processes, but in order to really make use of those, it 
is necessary to define them as some kind of generalized functions or distributions, in a 
fashion similar to the one that is used to define the Dirac delta-“function”. 
 
So, a decent stochastic process has values that are not independent, and it is of prime 
importance to properly define their dependence structure. To this end, one usually uses 
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the concept of filtration. This is simply an increasing family of sigma-algebras, i.e., a 
family of sigma-algebras ( )tF ,t T∈ with F Fs t⊂ for ≤s t . The sigma-algebra Ft can be 
interpreted as the set of all event observable up to timet , i.e., the set of all events whose 
occurrence can be decided based on one’s knowledge of the past up to timet . Thus, 

tF comprises the knowledge one has gathered about the process up to timet . In many 
cases, tF is the sigma-algebra generated by the random variables , ≤ξ s s t( ( ) )which 
means that tF  is the set of all events that can be expressed in terms of these random 
variables. This need not always be the case, reflecting the fact that, besides monitoring 
the process ξ up to time t , one might be able to get some additional information (e.g., 
by observing a second process that runs in parallel).  
 
It should be clear that the value of ( )ξ t itself is known at timet ; this amounts to saying 
that ξ t( ) is measurable with respect to tF , and gives rise to the following definition: 
 
A stochastic process ξ is said to be adapted to the filtration tF  if for any , ( )ξt t is 

tF measurable. 
 
In many cases, one needs a slightly stronger condition: 
 
A stochastic process ξ is said to be progressively measurable with respect to the 
filtration tF  if for everyt , the mapping , ,ξω s s ω( ) ( )with ≤s t and ∈ω Ω is 
measurable with respect to the product of tF  and the Borel sets. This is mainly a 
technical condition, implying in particular that the individual trajectories are Borel-
measurable (remember that there is always an underlying probability space (Ω, )F,P , 
and that a random variable is just an F -measurable function onΩ ).  
 
Once the dependency structure of a process is fixed, it is possible (though not always 
easy) to calculate the finite-dimensional marginal distributions of the process (i.e., the 
joint distributions ofξ ξ nt t1( ),..., ( )) , and by Kolmogorov’s existence theorem (see 
Construction of Random Functions and Path Properties for details), the process itself is 
determined. This way of constructing the process leads one to consider two stochastic 
processes equivalent if they have the same finite-dimensional marginals, and if this is 
the case, each of these processes is called a “version” of the other. In the case of an 
uncountable parameter space, this concept leads to some peculiarities, as the following 
example shows:  
 
Assume thatτ is uniformly distributed on [0,1]. Let =ξ t 0( ) for all ≥t 0 , and =η t n( ) if 

, ,...= =τt n n 1 2( ) , and =η t 0( ) for all other values oft . It is immediate that η and 
ξ are equivalent processes, but in spite of that, the trajectories of η are unbounded and 
discontinuous with probability one, whereas those of ξ are even constant. This example 
serves to show that many important properties of trajectories are not shared by all 
versions of a process (the mathematical reason behind this is that, e.g., the set of all 
bounded or continuous functions does not constitute an event, i.e., these sets are not 
measurable).Thus, saying, for example, that a given process has continuous trajectories, 
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is not strictly correct, and in the following discussion it will always be meant as  a short 
formulation for the more accurate but awkward statement that there is a version of the 
process that has the desired property.  
 
2.2. Correlation Theory 
 
For random variables, the expectation and variance are important parameters: the 
expectation, in some sense, gives the typical size of a realization of the random variable, 
whereas the variance indicates how much different realizations deviate from this typical 
value. When one has more than one random variable, then the covariance  

, =ξ η ξη ξ η( ) ( ) - ( ) ( )Cov E E E            (1) 

 
enters the picture. For example, the variance of the sum +ξ η can be expressed by the 
formula  
 

,+ = +ξ η ξ η ξ η2( ) ( ) ( )+ ( )Var Var Var Cov .           (2) 
 
One can base a fairly large part of the theory of stochastic processes on the study of 
these three quantities. Namely, one defines:  
 
The mean value function of the process ξ is given by  
 

= ξm t t( ) ( ( ))E ,           (3) 
 
and its covariance function is defined as  
 

, ,= ξ ξR s t s t( ) ( ( ) ( ))Cov            (4) 
 
(There is no need to separately define a variance function as the variance of ξ t( ) is 
simply given by ,R t t( ) ).   
 
For the mean value function, there are no obvious restrictions, but it is interesting to 
take a short look at the properties of the covariance function. This function is obviously 
symmetric, i.e.,  
 

, , ,=R s t R t s( ) ( )                         (5) 
 
and, which is less obvious, it is positive definite, which means that for any real 

,..., nx x1 and for any ,..., Tnt t1 ∈ , one has 
 

,
= =

≥∑∑
n n

i j i j
i j

x x R t t
1 1

0( ) .           (6) 
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On the other hand, for any symmetric, positive definite functionR , there exists a 
stochastic process ξ that has R as its covariance function (one possible choice is a 
Gaussian process - see later in this chapter for a definition).   
 
It is by no means true that the mean and covariance functions uniquely determine the 
process ξ , except for very rare special cases (even for a single random variable, there 
are infinitely many distributions that give the same mean and variance), so the 
conclusions made by correlation theory are valid for a large number of processes. This 
generality, of course, has to be paid for with a restriction on the type of statements that 
can be made in this context. In particular, one can only consider linear functionals of the 
process. For these, the mean and variance are readily calculated if one only knows the 
mean and correlation function of the process; for a nonlinear functional like sin ξ t( ( )) , 
on the other hand, it is not even possible to calculate the expectation.  
 
2.3. Convergence  
 
One often wants to study properties of stochastic processes like continuity or one-sided 
continuity, or the limiting behavior for →t ∞ that involve some kind of limiting 
operation. In probability theory, there are a few different concepts of convergence that 
can be applied in such an investigation. 
 
The weakest notion of convergence is convergence in probability. This is defined in the 
following way: 
 
A sequence ξn converges in probability to the random variable ξ  if, for any >ε 0 ,  
 
lim − > =P εξ ξn 0( ) .           (7) 
 
This concept is so weak that it can hardly be used to arrive at very meaningful 
conclusions. A process has to satisfy only very mild regularity conditions in order to be, 
for example, continuous in probability. Thus, for example, the Poisson process (see 
Construction of Random Functions an 
 
A little more meaningful is convergence in square mean. A sequence ξn of random 
variables converges in square mean to the random variable ξ if  
 

2 →ξ ξn 0(( - ) )E , →n ∞ .           (8) 
 
Still, this is a somewhat weak concept (the Poisson process, for instance, is still 
continuous in square mean), but it has the advantage that in deciding whether 
convergence in square mean holds, one only needs to consider the mean and covariance 
function of a process, and this makes convergence in square mean the natural concept of 
convergence in the setting of correlation theory. 
 
The most interesting type of convergence is convergence with probability one. In this 
case, one demands that convergence (in the usual sense) takes place for all trajectories 
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of the process except those in a set of probability zero. Unfortunately, here the problems 
mentioned at the end of Section 2.1 arise, namely, one can only find a version of the 
process that is, for example, continuous with probability one. So, one has to concentrate 
on conditions that ensure that a given process has aversion that is continuous (or right 
continuous, or has a limit for →t ∞ , or something similar). Here is one such result, 
stated without proof:  
 
Theorem 1 (Kolmogorov) If the process ξ satisfies 
 

h α+ ≤ βξ ξt t Ch(| ( ) - ( ) | )E                 (9) 
 
with α< < β0 and < <C ∞0 , then it has a version with continuous trajectories. 
 
One important concept in this connection is that of a separable process. A process ξ is 
called separable if there is a countable subset S of T such that for any ,T∈ ξt t( ) is 
contained in the set of all limit points of sequences ξ ns( )with s S∈n and →ns t . The 
set S  is called a separable set of the process ξ , and one has the following result, which 
is again stated without proof:  
 
Theorem 2 For any stochastic processξ , there exists a separable process equivalent to 
it (in other words, every stochastic process has a separable version). 

3. Types of Stochastic Processes 

3.1. Gaussian Process 
 
A Gaussian process is a stochastic process with the property that all its finite-
dimensional distributions are multivariate normal distributions. These processes are 
completely characterized by their mean value and covariance functions. One example of 
a Gaussian process is the Wiener process. One of the many ways to define it is as a 
mean zero Gaussian process with covariance function 
 

, =R s t( ) min ,s t( ) , , ≥s t 0( ) .           (10) 
 
Another example is the so-called Brownian bridge. Its parameter space is the interval 
[0,1], and its covariance function is given by  
 

, =R s t( ) min ,s t st( ) -            (11) 
 
(Again, the mean value of the function is 0). The Wiener and Brownian bridge process 
are closely related. The process 
 
B W W=t t t 1( ) ( ) - ( ) ,                 (12) 
 
for instance, is a Brownian bridge, and another way to obtain the Brownian bridge is to 
consider the conditional distribution of W t( )under W =1 0( ) . 
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Both the Wiener and the Brownian bridge process are Markov processes, as is the 
process obtained by letting  
 

2ξ e W e−= at tt a( ) ( ) ,                (13) 
 
where α > 0 and W is a Wiener process. This is the so-called Ornstein-Uhlenbeck 
process, and it is not only Gaussian and Markov, but also stationary (definitions of the 
Markov property and stationarity are given later in this section; see also Markov 
Processes and Stationary Processes). Integrating this process over item, i.e, taking 
 

0
d= ∫η ξ

t
t t t( ) ( ) ,                 (14) 

 
one arrives at another process that is often used as a model for Brownian motion; some 
times the process ξ is called the Ornstein –Uhlenbeck velocity process, and the process 
η is called the Ornstein-Uhlenbeck position process. One (among many) differences 
between the process η and the Wiener process is that the process η has differentiable 
trajectories, whereas the Wiener process doesn’t. Yet, for →a ∞ , the process 
η approaches the wiener process. 
 
It is interesting to note that a Gaussian process admits a representation in terms of a 
sequence of independent normal random variables. One way to get such a representation 
is the so-called Karhunen-Loéve expansion which states:  
 
Theorem 3 Let ξ be a mean zero Gaussian process with state space ,a b[ ]and 
covariance function R . Then one has the representation 
 

1 2

=
= ∑ξ φ η-

n n n
n

t t
∞

λ
1

( ) ( ) ,           (15) 

 
where nλ and φn are the eigenvalues and (orthonormal) eigenfunction of the Fredholm-
type equation  
 

,R d= ∫φ φ
b

a
t s t s sλ( ) ( ) ( ) ,           (16) 

 
and ηn is a sequence of independent standard normal random variables. 
 
Thus, for example, the Wiener process on the interval [0,1] can be represented as  
 

W
π=

=
+∑

n

t
n

∞

1

2 2
2 1

( )
( )

sin π+
ηn

n t2 1
2

( ) .           (17) 

 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

PROBABILITY AND STATISTICS – Vol. I - Stochastic Processes and Random Fields - K. Grill 
 

©Encyclopedia of Life Support Systems (EOLSS) 

- 
- 
- 
 

 
TO ACCESS ALL THE 27 PAGES OF THIS CHAPTER,  
Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx 

 

Bibliography 

Cramér, H., and Leadbetter, M. (1966) Stationary and Related Stochastic Processes. New York: Wiley 
[This is one of the most important references on stationary processes]  

Doob, J. (1945) Stochastic Processes. New York: Wiley [This is the fundamental reference work on 
stochastic processes] 

Karlin, S., and Taylor, H.M. (1974) A First Course in Stochastic Processes. New York: Academic Press 
[This is a very readable introduction to the theory of stochastic processes] 

Karlin, S., and Taylor, H.M. (1981) A Second Course in Stochastic Processes. New York: Academic 
Press [Not only the sequel to the first part, but also interesting in its own right, covers slightly advanced 
topics like diffusions, branching processes, etc.] 

Lawler, G.F., (1995) Introduction to Stochastic processes. New York: Chapman and Hall CRC Press [A 
nice introduction: not too hard to read, makes you solve problems using computer] 

Lifshits, M.A. (1995) Gaussian Random Functions. Dordrecht: Kluwer [An up-to-date view of the subject 
of Gaussian processes] 

Liptset, R. Sh., and Shiryayev, A. N. (1989) Theory of Martingales Dordrecht: Kluwer [An introduction 
to the theory of martingales and its applications] 

Malyshev, V. A., and Minlos, R. A. (1991) Gibbs Random Fields. Dordrecht: Kluwer [A discussion of 
Gibbs random fields and phase transitions] 

Rozanov, Yu. A. (1995) Probability Theory, Random Processes and Mathematical Statistics Dordrecht: 
Kluwer [This book is another fundamental reference for many aspects of stochastic processes] 

Yaglom, A.M. (1962) An Introduction to the Theory of Stationary Random Functions. Englewood Cliffs, 
NJ, USA: Prentice–Hall [This is a basic reference on stationary processes, giving in particular a good 
introduction to spectral theory] 

Biographical Sketch 

Karl Grill received the Ph.D. degree from TU Wien in 1983.  Since 1982 he is with TU Wien where he 
became an Associate Professor in 1988. He was a visiting Professor in the Department of Statistics, 
University of Arizona during 1991-92.  From February to August 1994, he held NSERC Foreign 
Researcher Award, Carleton University, Ottawa, Canada 

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-02-02

