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Summary 
 
Over the last 25 years the financial markets have gone through an enormous 
development. The introduction of financial derivatives such as options and futures on 
underlyings (stock, bond, currencies) has led to a new quality of the securitization of 
financial risks. The basic idea of a financial derivative is to buy insurance for risky 
assets on the market, i.e., to find participants in the market who are willing to share the 
risks and the profits of future developments in the market which are subject to 
uncertainty. 
 
The pricing of these financial instruments is based on an advanced mathematical theory, 
called Itô stochastic calculus. The basic model for an uncertain price is described by 
Brownian motion and related differential equations. The pricing of a European call 
option by Black, Scholes and Merton in 1973 (the Nobel Prize winning Black-Scholes 
formula) was a breakthrough in the understanding and valuing of financial derivatives. 
Their approach has become the firm basis for modern financial mathematics which uses 
advanced tools such as martingale theory and stochastic control to find adequate 
solutions to the pricing of a world-wide enormously increasing number of derivatives. 

1. A Tutorial on Mathematical Finance without Formulae 

Financial mathematics has become one of the most recent success stories of 
mathematics and probability theory in particular. In contrast to many mathematical 
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achievements which are known to specialists only, the Black-Scholes option pricing 
formula has gained popularity not only among practitioners in finance, but its fame has 
also attracted the attention of economists, physicists, econometricians, statisticians, etc. 
Hundreds of popular articles in economics, physics, mathematics journals, and far 
beyond, have been written about this topic. BBC made a documentary about the Nobel 
Prize winning formula. University professors explain the formula to high school 
students in order to convince them that mathematics is a topic worth studying. 
 
Mathematical models have been used in economics for a long time. By now, operations 
research, econometrics, and time series analysis constitute major parts of the curricula 
of business schools and economics departments. However, this article will not focus on 
these more classical topics but mainly on the approach which was started by Fisher 
Black (1938-1995), Myron Scholes, and Robert Merton in 1973. What was so entirely 
new that Scholes and Merton were awarded the Nobel Prize for economics in 1997? 
 
In 1973 the Chicago Board of Trade (CBOT) started trading so-called options, futures 
and other financial derivatives. For example, a European call option is a ticket (a 
contract) which entitles its purchaser to buy one share of a risky asset (such as the stock 
of Microsoft) at a fixed price (strike price) at a known date in the future (time of 
expiration or maturity). It is natural to ask: how much would the purchaser of the call 
option be willing to pay? Clearly, there are various problems. The purchaser gains a 
positive amount of money only if the price of Microsoft at maturity is indeed above the 
strike price. Then he can buy the share at the lower strike price and sell it at the higher 
market price to somebody else. However, since the price of Microsoft is subject to 
uncertainty, one does not know in advance whether this price will exceed the strike 
price in the future. There is a chance that the share price at maturity will reach a level 
below the strike price. Then it would be cheaper to buy a share of Microsoft on the 
stock market. However, an option (in contrast to a future) is not a contract that obliges 
its purchaser to buy the share. His gain at maturity would be zero in this case. 
 
Black, Scholes and Merton approached the problem of pricing an option in a physicist's 
way. They started by assuming a reasonable model for the price of a risky asset. The 
search for such a model has a long history. Empirical (statistical, econometric) research 
has shown that changes of prices in the future are hardly predictable by mathematical 
models. In the economics literature this fact runs under the name of "random walk 
hypothesis". A random walk is defined at discrete equidistant instants of time. In 
finance, however, one is mainly interested in modeling prices at every instant of time. 
We call this a continuous time model. Brownian motion is a natural analogue of a 
random walk in continuous time. It is a physical model for the movement of a small 
particle suspended in a liquid and has been studied in the physics literature since the 
beginning of the 20th century. One of the famous contributors to this theory was Albert 
Einstein. Before Einstein, a young French PhD student, called Louis Bachelier, 
proposed in his 1900 thesis Brownian motion as a model for speculative prices. One of 
the imperfections of this model is that Brownian motion can assume negative values, 
and this might have been one of the reasons that his model had been forgotten for a long 
time. Only in the 1960s the economist Samuelson (Nobel Prize for economics in 1970) 
propagated the exponential of Brownian motion (so-called geometric Brownian motion) 
for modeling prices which are subject to uncertainty to his students at M.I.T. 
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In the work of Black, Scholes, and Merton, geometric Brownian motion is the basic 
mathematical model for price movements. Moreover, they realized that Brownian 
motion is closely related to a deep mathematical theory, stochastic or Itô calculus, 
named after the Japanese mathematician Kiyosi Itô who developed this theory in the 
1940s. Classical calculus is about differentiation and integration of "smooth" functions. 
In contrast to the latter, paths of Brownian motion are extremely irregular (non-
differentiable) functions and therefore classical calculus is not a suitable tool. Although 
Itô calculus had been known and used by certain physicists, engineers, and other applied 
scientists for some time, it did not become very popular outside some groups of 
specialists. By now, everybody working in (theoretical or practical) finance knows 
about the basic rules of Itô calculus. 
 
The main contribution of the fathers of the option pricing formula, however, was a 
totally new idea on the economics side. They argued that the seller of a European call 
option (usually a big financial institution) would not wait passively until time of 
maturity. On the contrary, if he/she was a rational person he/she would invest a certain 
amount of money in the same stock (e.g. Microsoft) and in a riskless asset (e.g. a 
savings account with fixed interest rate) according to a dynamic trading strategy such 
that the value of the portfolio at maturity would be exactly the value of the option at 
maturity: either zero if the share price was below the strike price or, otherwise, the 
positive difference between the share and the strike prices. A trading strategy which 
replicates the value of the option at maturity is called a hedge. The existence of such a 
hedge is a justification for the price of an option, but it is important in itself for financial 
practice. The amount of money which the seller of the option had to invest for his/her 
hedge would be a fair price for the option. Moreover, Black, Scholes, and Merton 
argued that, if the option was sold at a price other than the Black-Scholes price, a 
rational person could use this fact to make unlimited profits without accompanying risk 
(so-called arbitrage). 
 
The Black-Scholes price, expressed in the famous Black-Scholes formula, because of its 
convincing rationale, became a major success and was well accepted by practitioners in 
the financial markets. The New York Times (15 October, 1997) wrote: "Soon traders 
were valuing options in the floor of the exchange, punching half a dozen numbers into 
electronic calculators hard-wired with the formula. … Mr. Black and Mr. Scholes 
became highly regarded at the exchange that when they visited, traders would give them 
a standing ovation." 
 
Despite various imperfections of the underlying mathematical model, the Black-Scholes 
approach was a starting point for pricing other kinds of financial derivatives. For 
example, in practice European calls are less frequently traded than options which can be 
exercised at anytime before or at time of maturity (American-type options). Moreover, 
an option, future, etc., does not necessarily have to be linked to a share price, but to a 
composite stock index such as the Dow Jones, Nikkei, Standard & Poors 500, DAX, 
etc., or to bond prices, foreign exchange rates, or any other underlying which is due to 
uncertainty. The basic aim of a financial derivative is securitization of risks; the Black-
Scholes approach allows the seller and the purchaser of a properly priced derivative to 
hedge against future risks due to uncertainty of price movements. 
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The large variety of financial products which has been created by financial institutions 
became a challenge to mathematics and in particular to the specialists of Itô calculus. 
Since the end of the 1970s, they have pushed forward the development of financial 
mathematics by exploiting the most advanced tools, in particular functional analysis, 
martingale theory, stochastic control, partial differential equations. By now, financial 
mathematics is a well established theory with a great future which is taught at 
mathematics and economics departments all over the world. 
 
Clearly, the Black-Scholes world is an idealization of the real financial world. For 
example, the mathematical assumption of geometric Brownian motion as a model for a 
risky price is known to be in contradiction with real-life price data. Once in a while the 
stock market is shaken by shocks (due to political events, recessions, bursts of economic 
activity, etc.) resulting in unexpected price jumps. Such a behavior cannot happen in the 
Black-Scholes world. Over the last 20 years several events showed the limitations of the 
model. In October 1987 (Black Monday) a major crash affected the New York Stock 
Exchange causing financial losses of several billion U.S. dollars. Although it did not 
have a major impact on the market, the crash of Barings Bank made the world aware of 
the fact that financial derivatives can be very dangerous when handled by careless 
management. Quite recently, in October 1998, the turmoil around Long Term Capital 
Management (LTCM), a hedge fund worth hundreds of billions U.S. Dollars, with both 
Scholes and Merton as founding members, gave the public more reasons to have less 
confidence in a (seemingly perfect) mathematical formula. The events around LTCM 
caused, within a week's time, a 13.7% loss of the U.S. Dollar against the Japanese Yen. 
Newsweek (19 October, 1998) asked: "The buck is bruised. So is another big hedge 
fund. What's going on?" By now, the derivatives business has exceeded an annual 
volume of $15 trillion. It is one of the financial fundamentals on which modern society 
is based. 
 
Mathematical formulae can help to make rational decisions in finance. However, the 
above examples show quite clearly that too much trust in formulae, paired with wrong 
decisions of management, can lead to fatal consequences not only for one particular 
company, but for whole national economics. In view of the enormous amounts of 
money involved in derivatives it was realized quite early in the 1990s that the financial 
industry had to facilitate the measurement of risk. In 1992 the so-called Basel 
Committee of the Bank for International Settlements (representing 27 European 
members plus the U.S., Canada, Japan, Australia, and South Africa) presented proposals 
to estimate market risk and to define the resulting capital requirements to be 
implemented in the banking sector. The European Union (EEC 93/6) approved a 
directive, effective January 1996, that mandates banks and investment firms to set 
capital aside to cover market risks. In the U.S., the Securities and Exchange 
Commission fulfills a similar regulatory function. Measuring and estimating financial 
risks in its various forms has become another challenge to mathematics, in particular 
statistics. Based on probabilistic models, various statistical methods have been 
developed to quantify financial risks. Among them, the Value at Risk (VaR) has 
become most popular. Companies such as RiskMetrics have specialized in advising the 
financial industry how to measure and estimate risks, and government regulators control 
financial institutions as to whether they satisfy certain risk standards. 
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An exciting new development is the birth of bank-assurance: we witness a convergence 
of financial and actuarial thinking. One relevant buzz-word is ART: Alternative Risk 
Transfer. Examples are Catastrophe Bonds; the coupon payment (and possibly the 
principal re-payment) is contingent on the (non-)occurrence of a catastrophic event. 
Think for the latter of an earthquake or hurricane, say. Other examples are energy and 
weather derivatives. 
 
- 
- 
- 
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