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Summary 
 
This article attempts to offer a perspective on the subject areas of inventories, water 
storage and queues, which are three important life support systems. For this purpose 
some selected models for these systems are surveyed, including classical models that 
continue to be important, and models that have been the subject of relatively new 
research.  
 
The theoretical as well as practical ideas underlying the models are emphasized, a 
sketch is given of their analysis and the main results are listed. Inventory models are 
described in Section 2, dam models in Section 3, the queueing system GI/G/S in Section 
4 and queueing networks in Section 5. 
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1. Introduction 
 
Inventories, water storage and queues are three of the important systems that greatly 
affect the daily lives of human beings. The study of these systems was initiated at the 
beginning of the twentieth century and continues to be an active area of research even 
today, with a vast class of new problems being investigated. Brief descriptions of these 
systems are as follows. 
 
An inventory is an amount of material stored for the purpose of future sale or 
production. Traditionally inventories were viewed as a measure of wealth. However 
surplus stocks were also a principal cause of business failures, and in the 1920s 
increased emphasis was put on the liquidity of assets such as inventories. With the 
changing economic conditions of the1970s managers began to recognize the importance 
of balancing the advantages and disadvantages of carrying inventories. Research has 
shown that the success of the Japanese automobile industry in the 1980s is due to a 
production system that efficiently eliminates the need for any significant amount of 
inventory. Inventory control is increasingly important in today's economy. 
 
The storage of water in a dam is also a type of inventory. Here the inflow of water 
depends on rainfall, underground seepage, etc., over which the operator of the dam has 
no control. However, the operator can (and does) try to control the release of water 
according to the demand, which is either for electric power (expressed in terms of 
volume of water required to produce it), irrigation or for water to be supplied to a city. 
 
A queueing system is a facility that offers a certain service. Customers arrive at this 
system and demand this service. If they cannot be served immediately upon arrival they 
either leave the system (are lost), or else decide to wait (are delayed) and are served 
according to a prescribed policy. As applied to telephone systems queueing theory 
(under the title congestion theory) emerged in the early part of the twentieth century. It 
has continued to be a very active of research throughout, with newer areas of 
application being investigated in the last thirty years or so; these include computer 
performance, telecommunication and flexible manufacturing systems. 
 
The quantity of interest in a queueing system is either the number of customers waiting 
for service or else the workload submitted to the system. This quantity may be 
compared to material held in stock for future use (measured in discrete or continuous 
units). This establishes an analogy between queues and inventories. 
 
The above descriptions make it clear that storage systems may be a common term to 
describe inventories, water storage and queues. The study of storage systems is based on 
mathematical models and the objective is to study the behavior of stochastic processes 
that arise from the models and to obtain rules for operating the systems in an optimal 
manner, given the costs.  
 
This subject area is of interest to engineers, mathematicians and economists. The 
analysis of the models uses techniques of applied mathematics and operations research, 
and the results of the theory of stochastic processes. The results obtained range from 
abstract mathematical properties to results meant for practical use. 
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2. Inventory Models 
 
The need to stock up items in order to meet future needs has been felt since the 
beginning of history. But it was not until the turn of the twentieth century that analytical 
techniques were used to solve inventory problems and a theory of inventory control 
began to develop. The objective of this theory is to determine when to order 
replenishment and how much to order. In order to do this the system operator has to 
decide how often the inventory position should be inspected (that is, periodic inspection 
versus continuous inspection). Thus inventory control is based on an operating policy. 
 
The key components of an inventory model are (1) the pattern of demands for the item, 
(2) a policy regarding actions to be taken to deal with demands that occur when the 
system is out of stock (namely, whether to allow backlogs or let sales to be lost), (3) 
lead time, which is the interval of time between the ordering time and the time of 
delivery and (4) various costs incurred in operating the system such as procurement 
costs, inventory carrying (holding) costs, costs associated with deficit, costs of filling 
orders and costs of data gathering and control procedures (information processing). 
 
In practice the demand pattern and the lead time may be subject to randomness, and the 
resulting model is then a stochastic model. When randomness is absent, the model is 
deterministic. 
 
Some of the earliest inventory models are described in the following subsections. The 
conceptual framework of these models has remained important even in recent 
developments. 
 
2.1. The (Q, r) Model and the EOQ Formula 
 
There is a single location at which demands occur at a constant rate of λ units per year. 
It is assumed that the system is never out of stock when a demand occurs. The lead time 
is a constant τ. There is a fixed ordering cost A and each unit costs C independently of 
the quantity ordered. Also, let I denote the cost rate per each dollar invested in 
inventory. The information processing costs are independent of the order size and the 
reorder rule, and are not included in the total cost of operating the system. 
 
Suppose that a quantity Q is ordered each time the system replenishes its stock. Then 
the intervals of time between successive replenishments are of length T Q= λ . Since 
the lead time is a constant, the intervals of time between successive deliveries are also 
of length T, which is called the length of a cycle. During each cycle the system behavior 
is repeated. The number of cycles during a time interval (0, t] is given by n = [t/T], 
where for any real number x, [x] is the largest integer less than or equal to x. 
 
Suppose the system starts at time t = 0 with a delivery, the inventory level just prior to 
this delivery being s(s ≥ 0). The inventory earning cost per cycle is given by 
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The number of deliveries made during a time interval (0, t] is n, whereas the number of 
orders placed during this interval is either n or n + 1 (this is denoted as m in the 
following calculations). Thus the total cost over (0, t] is 
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where η is the inventory carrying cost over (0, t − nT], this being less than the quantity 
given by (1). The long term average annual cost is 
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Since Cλ does not depend on Q, the expression given by (3) is a minimum when s = 0 
and 
 

2 .AQ
IC

=
λ  (4) 

 
Since the optimal inventory level is zero just prior to a delivery, the optimal ordering 
time is such that the corresponding inventory level (the reorder paint) is rh, where 
 

0 .hr Q
T
⎡ ⎤+ − =⎢ ⎥⎣ ⎦
τ

λτ  (5) 

 
The expression (4) is called the economic order quantity (EOQ) and is one of the 
earliest and best known results of inventory theory. It was first obtained by Ford Harris 
of the Westinghouse Corporation in 1915, and was also derived by R.H. Wilson, for 
which reason it is sometimes called the Wilson Lot Size formula. 
 
The EOQ minimizes the total cost for given A and I. In practice it may be more 
appropriate to find ways of reducing the Fixed cost A or the inventory carrying cost C. 
This is a part of the Japanese Just-in-Time (JIT) system, in which A is reduced as much 
as possible. This will also reduce the EOQ and the average inventory level. 
 
The overall approach of which JIT is a part is known as stockless production, a concept 
first introduced by the Toyota Motor Company in the 1980s. In this approach to the total 
manufacturing system inventories are, reduced at every stage of production with a view 
to increased productivity, improved quality and reduced lead times. The associated 
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information processing is known as Kanban (the Japanese word for a card). 
 
2.2. The Newsvendor Problem 
 
Each day a newsvendor has to decide how many copies of a particular paper to buy for 
the day's sale. The paper costs c per copy and the selling price is s(> c) per copy. The 
demand for this newspaper is a random variable D with a distribution function (D.F.)F. 
Any copy not sold at the end of the day is a total loss. 
 
If the vendor buys h copies of the newspaper each day, the gain is s min(h, D)−ch. The 
expected gain is 
 

0
( ) [1 ( )] .

h
G h s F x dx ch= − −∫  (6) 

 
This is a minimum for ˆ,h h=  where 
 

ˆ( ) 1 / .F h c s= −  (7) 
 
Thus ĥ  is the optimal number of copies the vendor should buy each day. 
 
The newsvendor problem leads to a single period inventory model dealing with a 
perishable commodity. The obvious extension of this model is to items that can be 
carried over from period to period. Two such models are described below. 
 
2.3. The (s, S) Inventory Model 
 
This model is described as follows. Two real numbers s, S are given, where 0 ≤ s < S < 
∞. The inventory is inspected at times n = 0, 1, 2,… Let ξn+l denote the demand over the 
period (n, n+1]; ξ1, ξ2,… are independent and identically distributed (IID) random 
variables. The amount sold always equals the demand (that is, backlogs are allowed). 
Whenever the inventory level falls below s, an order is placed to bring up the level to S, 
but otherwise no ordering is done. Thus the amount ordered at time n is  
 

1 0, if , and ifn n n ns Z S S Z Z sη + = ≤ ≤ = − <  (8) 
 
where Zn is the inventory level at time n. Deliveries are made instantaneously (thus the 
lead time is zero). Therefore Zn satisfies the recurrence, relation 
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n n n n
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+
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Suppose that an order is placed initially, so that Z0 < s. The D.F. Fn of Zn, can be 
expressed in terms of its distribution in between two consecutive replenishments. Thus, 
let Δ = S − s and 
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where S0 = 0, Sn = ξl + ξ2 + … + ξn = total demand up to time n(n ≥ 1). In particular, let 
Hn(s) = fn(n≥1). Then the intervals of time between successive replenishments are IID 
with the distribution {fn}. From renewal theory it is known that this distribution has 
mean λ, where 
 

0
{ } .nP S

∞

= ≤ Δ <∑λ ∞  (11) 

 
A simple probability argument shows that 
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which is a renewal equation for Fn(x). Its unique bounded solution is given by 
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where u0 = 1 and for n ≥ 1, un is the probability that an order is placed at time n. Thus 
 

{ } ( 0) .n nu P Z s n= < ≥  (14) 
 
The probabilities un can be obtained from {fn}, since (12) yields the relation 
 

1
.

n
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m

u f u −
=
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Therefore the solution (13) is completely determined. 
 
The steady state distribution of Zn can also be found, using renewal theory. Thus 
 

1lim nn
u −
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=λ  (16) 

 
and 
 

1
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An optimization problem that arises in this model is to find the values of s, S that 
minimize the long run expected cost of operating the system. Apart from the costs A, C 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

PROBABILITY AND STATISTICS – Vol. II - Inventories, Water Storage and Queues - N.U. Prabhu 
 

©Encyclopedia of Life Support Systems (EOLSS) 

and I defined in the (Q,r) model there is now a cost p per unit for backordering an item. 
The total cost at time n is given by 
 

{ 0} { } {0 }1 [ ( )]1 1
n n nn Z n Z s n Z SpZ A C S Z hZ< < ≤ ≤− + + − +  (18) 

 
where h = IC = holding cost and for any event E, 1E = 1 or 0 according as E occurs or 
does not occur (the indicator function of E). As an illustration, suppose that the demands 
ξn have density μe−μx. Easy calculations show that 
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and 
 

1 .μ= + Δλ  (20) 
 
The steady state D.F. of the inventory level Zn is therefore given by 
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Using this distribution in (18) the expected long run cost is found to be 
 

21 1( ) ( 1) ( 2 )
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expressed as a function of s and Δ. This is a minimum when 
 

22   and  s h A hA e
h h p

μ
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− +
Δ = =

+
λ  (23) 

 
if 2   A h pμ < and  
 

2  and  0AS s
hμ

= =  (24) 

 
otherwise. It should be noted that Δ is the replenishment when an order is placed and the 
optimal value of Δ is given by the EOQ formula since μ−1 is the rate of demand. 
 
2.4. A Periodic Review Base Stock Inventory Model 
 
A production facility has a finite capacity of c units per period for producing a certain 
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item. Inventory inspection is carried out periodically at times n = 0,1,2,…. There is a 
target inventory level R (called the base stock inventory level) at the end of each period. 
The difference between R and the actual inventory level at the end of this period is 
called the shortfall. The problem is to find the value of R that provides a balance 
between the end of period holding and backorder costs. 
 
The demands ξl, ξ2,… during the successive periods are IID random variables. Let Zn 
denote the inventory level at time n(≥ 0). The operating policy is a follows. At the 
beginning of the period (n, n+1], the shortfall Vn = R − Zn and the demand ξn+1 are 
observed. Then an amount Vn + ξn+1 is produced during this period subject to the 
capacity constraint. At the end of this period all of the demand is met, allowing for 
backlogs. Thus we have 
 

1 1 1min ( , )n n n n nZ Z c V ξ ξ+ + += + + −  (25) 
 
or equivalently in terms of the shortfall 
 

1 1( ) ( 0) .n n nV V c nξ +
+ += + − ≥  (26) 

 

From the theory of random walks it is known that as n → ∞, Vn → V in distribution if, 
and only if E(ξn) < c. The distribution of the random variable V is known, but has a 
complicated form. However, a more useful result is the following. Under certain 
conditions there exist numbers λ  and C (λ> 0, 0 ≤ C ≤ 1) such that 
 

{ } ~ ( )vP V v Ce v−> →λ ∞  (27) 
 
A consequence of the operating policy is that from time to time the production capacity 
c may not be fully utilized, which happens if the amount produced Vn + ξn+l is less than 
c. If the unused capacity during (n, n+1] is denoted as In+1 then 
 

1 1( ) ( 0) .n n nI V c nξ −
+ += + − ≥  (28) 

 
Here and in (27) the notation used is the following. For any real number x, 
 

max(0, )  and  min(0, ) .x x x x+ −= = −  (29) 
 
This model addresses the interaction between inventories, production capacity and 
quality of service, and is motivated by the current situation faced by manufacturing 
companies, which are under intense pressure to simultaneously reduce inventories, 
utilize capacity and provide high customer service levels. 
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