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Summary 
 
Statistics is the study of uncertainty. The field of statistics is based on two major 
paradigms: conventional and Bayesian. Bayesian methods may be derived from an 
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axiomatic system and provide a complete paradigm for both statistical inference and 
decision making under uncertainty. Bayesian methods provide a coherent methodology 
which makes it possible to incorporate relevant initial information, and which alleviates 
many of the difficulties faced by conventional statistical methods. The Bayesian 
paradigm is based on an interpretation of probability as a conditional measure of 
uncertainty which closely matches the sense of the word ‘probability’ in ordinary 
language. Statistical inference about a quantity of interest is described as a modification 
of the uncertainty about its value in the light of evidence, and Bayes theorem specifies 
how this modification should be made. Bayesian methods may be applied to highly 
structured complex problems, which have been often not easily tractable by traditional 
statistical methods. The special situation, often met in scientific reporting and public 
decision making, where the only acceptable information is that which may be deduced 
from available documented data, is addressed as an important particular case. 

1. Introduction 

Scientific, experimental or observational results generally consist of (possibly many) 
sets of data of the general form 1{ ,....., }D = nx x , where the ix s are somewhat 
“homogeneous” (possibly multidimensional) observations ix . Statistical methods are 
then typically used to derive conclusions on both the nature of the process which has 
produced those observations, and on the expected behavior at future instances of the 
same process. A central element of any statistical analysis is the specification of a 
probability model which is assumed to describe the mechanism which has generated the 
observed data D  as a function of a (possibly multidimensional) parameter (vector) 
∈Ωω , sometimes referred to as the state of nature, about whose value only limited 

information (if any) is available. All derived statistical conclusions are obviously 
conditional on the assumed probability model. 
 
Unlike most other branches of mathematics, conventional methods of statistical 
inference suffer from the lack of an axiomatic basis; as a consequence, their proposed 
desiderata are often mutually incompatible, and the analysis of the same data may well 
lead to incompatible results when different, apparently intuitive procedures are tried 
(see the 1970's monographs by Lindley  and by Jaynes for many instructive examples). 
In marked contrast, the Bayesian approach to statistical inference is firmly based on 
axiomatic foundations which provide a unifying logical structure, and guarantee the 
mutual consistency of the methods proposed. Bayesian methods constitute a complete 
paradigm to statistical inference, a scientific revolution in Kuhn’s sense. 
 
Bayesian statistics only require the mathematics of probability theory and the 
interpretation of probability which most closely corresponds to the standard use of this 
word in everyday language: it is no accident that some of the more important seminal 
books on Bayesian statistics, such as the works of de Laplace, de Finetti or Jeffreys, are 
actually entitled “Probability Theory”. The practical consequences of adopting the 
Bayesian paradigm are far reaching. Indeed, Bayesian methods (i) reduce statistical 
inference to problems in probability theory, thereby minimizing the need for completely 
new concepts, and (ii) serve to discriminate among conventional statistical techniques, 
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by either providing a logical justification to some (and making explicit the conditions 
under which they are valid), or proving the logical inconsistency of others. 
 
The main consequence of these foundations is the mathematical need to describe by 
means of probability distributions all uncertainties present in the problem. In particular, 
unknown parameters in probability models must have a joint probability distribution 
which describes the available information about their values; this is often regarded as 
the characteristic element of a Bayesian approach. Notice that (in sharp contrast to 
conventional statistics) parameters are treated as random variables within the Bayesian 
paradigm. This is not a description of their variability (parameters are typically fixed 
unknown quantities) but a description of the uncertainty about their true values. 
 
An important particular case arises when either no relevant prior information is readily 
available, or that information is subjective and an “objective” analysis is desired, one 
that is exclusively based on accepted model assumptions and well-documented data. 
This is addressed by reference analysis which uses information-theoretic concepts to 
derive appropriate reference posterior distributions, defined to encapsulate inferential 
conclusions on the quantities of interest, solely based on the supposed model and the 
observed data. 
 
In this article it is assumed that probability distributions may be described through their 
probability density functions, and no distinction is made between a random quantity and 
the particular values that it may take. Bold italic roman fonts are used for observable 
random vectors (typically data) and bold italic Greek fonts are used for unobservable 
random vectors (typically parameters); lower case is used for variables and upper case 
for their dominion sets. Moreover, the standard mathematical convention of referring to 
functions, say f  and g  of X∈x , respectively by ( )f x  and ( )g x , will be used 

throughout. Thus, ( )p Cθ and ( )p Cx  respectively represent general probability 
densities of the random vectors ∈Θθ  and X∈x  under conditions C, so that 

( ) 0, ( ) 1p C p C d
Θ

≥ =∫θ θ θ , and ( ) 0, ( ) 1
X

p C p C d≥ =∫x x x . This 

admittedly imprecise notation will greatly simplify the exposition. If the random vectors 
are discrete, these functions naturally become probability mass functions, and integrals 
over their values become sums. 
 
Density functions of specific distributions are denoted by appropriate names. Thus, if x  
is a random quantity with a normal distribution of mean μ  and standard deviation σ , 

its probability density function will be denoted N( , )x μ σ . Table 1 contains definitions 
of other distributions used in this article. 
 

Name Probability Density or Probability Mass Function Parameter(s) 
Beta ( ) 1 1

( ) ( )Be( , ) (1 ) , (0,1)x x x xΓ + − −
Γ Γ= − ∈α β α β
α βα β  0, 0> >α β  

Binomial 
Bi( , ) (1 ) , {0,......, }x xx x

x
−⎛ ⎞

= − ∈⎜ ⎟
⎝ ⎠

θ θ θ n
n

n n  {1,2,....}, (0,1)∈ ∈θn

Exponential Ex( ) , 0xx e x−= >θθ θ  0>θ  
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ExpGamma 
1( )

Eg( , ) , 0
x

x x++
= >

α

α
αβ
β

α β  
0, 0> >α β  

Gamma 1
( )Ga( , ) , 0xx x e x−

Γ= >
αβ α− β
αα β  0, 0> >α β  

NegBinomial 1
N b( , ) (1 ) , {0,1, ....}

1
r xr x

x r x
r
+ −⎛ ⎞

= − ∈⎜ ⎟−⎝ ⎠
θ θ θ  {1,2,....}, (0,1)r∈ ∈θ  

Normal 1/ 2

/ 2
11

2(2 )
N ( , ) exp[ ( ) ( )],k

t k
k

−∑ −∑ = − ∑ ∈
π

x x - x - xμ μ μ R def.pos.k∈ ∑,μ R  

Poisson 
!Pn( ) , {0,1,.....}
x

xx e x−= ∈λ λλ  λ > 0  

Student 1
2

2

( ) 2 ( 1) / 21 1
( )

St( , , ) [1 ( ) ] ,xx x
+Γ − − +

Γ
= + ∈

α

α
μ α

α σσ απ
μ σ α R  , 0, 0∈ > >μ σ αR  

 
Table 1. Notation for common probability density and probability mass functions 

 
Bayesian methods make frequent use of the concept of logarithmic divergence, a very 
general measure of the goodness of the approximation of a probability density ( )p x by 
another density ˆ ( )p x . The logarithmic divergence of a probability density ˆ ( )p x  of 
the random vector X∈x  from its true probability ( )p x , is defined as 

ˆ ˆ{ ( ) ( )} ( ) log{ ( ) ( )}
X

p p p p p d= ∫δ /x x x x x x . It may be shown that (i) the 

logarithmic divergence is non-negative (and it is zero, if, and only if, ˆ ( ) ( )p p=x x   

almost everywhere), and (ii) that ˆ{ ( ) ( )}p pδ x x  is invariant under one-to-one 
transformations of x . 
 
This article contains a brief summary of the mathematical foundations of Bayesian 
statistical methods (Section 2), an overview of the paradigm (Section 3), a description 
of useful inference summaries, including estimation and hypothesis testing (Section 4), 
an explicit discussion of objective Bayesian methods (Section 5), a detailed analysis of a 
simplified case study (Section 6), and a final discussion which includes pointers to 
further issues not addressed here (Section 7). 

2. Foundations 

A central element of the Bayesian paradigm is the use of probability distributions to 
describe all relevant unknown quantities, interpreting the probability of an event as a 
conditional measure of uncertainty, on a [0,1] scale, about the occurrence of the event in 
some specific conditions. The limiting extreme values 0 and 1, which are typically 
inaccessible in applications, respectively describe impossibility and certainty of the 
occurrence of the event.  
 
This interpretation of probability includes and extends all other probability 
interpretations. There are two independent arguments which prove the mathematical 
inevitability of the use of probability distributions to describe uncertainties; these are 
summarized later in this section. 
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2.1. Probability as a Measure of Conditional Uncertainty 
 
Bayesian statistics uses the word probability in the same sense in which this word is 
used in everyday language, as a conditional measure of uncertainty associated with the 
occurrence of particular event, given the available information and the accepted 
assumptions. Thus, Pr( )E C  is a measure of (presumably rational) belief in the 
occurrence of the event E under conditions C. It is important to stress that probability is 
always a function of two arguments, the event E whose uncertainty is being measured, 
and the conditions C under which the measurement takes place; “absolute” probabilities 
do not exist. In typical applications, one is interested in the probability of some event E 
given the available data D, the set of assumptions A which one is prepared to make 
about the mechanism which has generated the data, and the relevant contextual 
knowledge K, which might be available. Thus, Pr( , , )E D A K  is to be interpreted as a 
measure of (presumably rational) belief in the occurrence of the event E, given data D, 
assumptions A and any other available knowledge K, as a measure of how “likely” is the 
occurrence of E in these conditions. Sometimes, but certainly not always, the 
probability of an event under given conditions may be associated with the relative 
frequency of “similar” events in “similar” conditions. The following examples are 
intended to illustrate the use of probability as a conditional measure of uncertainty. 
 
Probabilistic diagnosis. A human population is known to contain 0.2% of people 
infected by a particular virus. A person, randomly selected from that population, is 
subject to a test which is from laboratory data known to yield positive results in 98% of 
infected people and in 1% of non- infected, so that, if V denotes the event that a person 
carries the virus and + denotes a positive result, Pr( )V+ =0.98 and Pr( )V+ =0.01. 

Suppose that the result of the test turns out to be positive. Clearly, one is then interested 
in Pr( , , )V A K+ , the probability that the person carries the virus, given the positive 
result, the assumptions A about the probability mechanism  generating the test results, 
and the available knowledge K of the prevalence of the infection in the population under 
study (described here by Pr( ) 0.002V K = ) . An elementary exercise in probability 
algebra, which involves Bayes theorem in its simplest form (see Section 3), yields 
Pr( , , ) 0.164.V A K+ =  Notice that the four probabilities involved in the problem 
have the same interpretation: they are all conditional measures of uncertainty. Besides, 
Pr( , , )V A K+  is both a measure of the uncertainty associated with the event that the 
particular person who tested positive is actually infected, and an estimate of the 
proportion of people in that population (about 16.4%) that would eventually prove to be 
infected among those which yielded a positive test. 

 
Estimation of a proportion. A survey is conducted to estimate the proportion θ  of 
individuals in a population who share a given property. A random sample of n  
elements is analyzed, r of which are found to possess that property. One is then 
typically interested in using the results from the sample to establish regions of [0,1] 
where the unknown value of θ  may plausibly be expected to lie; this information is 
provided by probabilities of the form Pr( , , , , )a b r A K< θ n , a conditional measure 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

PROBABILITY AND STATISTICS – Vol. II - Bayesian Statistics - José M. Bernardo 
 
 

©Encyclopedia of Life Support Systems (EOLSS) 

of the uncertainty about the event that θ  belongs to ( , )a b  given the information 
provided by the data ( , )r n , the assumptions A made on the behavior of the mechanism 
which has generated the data ( a random sample of n  Bernoulli trials), and any relevant 
knowledge K on the values of θ  which might be available. For example, after a political 
survey in which 720 citizens out of a random sample of 1500 have declared their 
support to a particular political measure, one may conclude that 
Pr( 0.5 720,1500, , ) 0.933A K< =θ , indicating a probability of about 93% that a 
referendum of that issue would be lost. Similarly, after a screening test for an infection 
where 100 people have been tested, none of which has turned out to be infected, one 
may conclude that Pr( 0.01 0,100, , ) 0.844A K< =θ , or a probability of about 84% 
that the proportion of infected people is smaller than 1%. 

 
Measurement of a physical constant. A team of  scientists, intending to establish the 
unknown value of a physical constant μ , obtain data 1{ ,....., }D x x= n which are 
considered to be measurements of μ  subject to error. The probabilities of interest are 

then typically of the form 1Pr( ,....., , , )a b x x A K< <μ n , the probability that the 
unknown value of μ  (fixed in nature, but unknown to the scientists) lies within an 
interval ( , )a b  given the information provided by the data D, the assumptions A made 
on the behavior of the measurements mechanism, and whatever knowledge K might be 
available on the value of the constant μ . Again, those probabilities are conditional 
measures of uncertainty which describe the (necessarily probabilistic) conclusions of the 
scientists on the true value of μ , given available information and accepted assumptions. 
For example, after a classroom experiment to measure the gravitational field with a 
pendulum, a student may report (in m/sec2) something like 
Pr(9.788 9.829 , , ) 0.95D A K< < =g , meaning that, under accepted knowledge K 
and assumptions A, the observed data D indicate that the true value of g  lies within 
9.788 and 9.829 with probability 0.95, a conditional uncertainty measure on a [0,1] 
scale. This is naturally compatible with the fact that the value of the gravitational field 
at the laboratory may well be known with high precision from available literature or 
from precise previous experiments, but the student may have been instructed not to use 
that information as part of the accepted knowledge K, Under some conditions, it is also 
true that if the same procedure were actually used by many other students with similarly 
obtained data sets, their reported intervals would actually cover the true value of g  in 
approximately 95% of the cases, thus providing some form of calibration for the 
student’s probability statement (see Section 5.2). 

 
Prediction. An experiment is made to count the number r of times that an event E takes 
place in each of n  replications of a well defined situation; it is observed that E does 
take place ir  times in replication i, and it is desired to forecast the number of times r 
that E will take place in a future, similar situation. This is a prediction problem on the 
value of an observable (discrete) quantity r, given the information provided by data D, 
accepted assumptions A on the probability mechanism which generate the ir ’s , and any 
relevant available knowledge K. Hence, simply the computation of the 
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probabilities 1{Pr( ,...., , , )}r r r A Kn , for r = 0,1,…., is required. For example, the 
quality assurance engineer of a firm which produces automobile restraint systems may 
report something like 1Pr( 0 .... 0, , ) 0.953r r r A K= = = = =10  after observing that 
the entire production of airbags in each of n =10 consecutive months has yielded no 
complaints from their clients.  
 
This should be regarded as a measure, on a [0,1] scale, of the conditional uncertainty, 
given observed data, accepted assumptions and contextual knowledge, associated with 
the event that no airbag complaint will come from next month’s production and, if 
conditions remain constant, this is also an estimate of the proportion of months expected 
to share this desirable property. 
 
A similar problem may naturally be posed with continuous observables. For instance, 
after measuring some continuous magnitude in each of n  randomly chosen elements 
within a population it may be desired to forecast the proportion of items in the whole 
population whose magnitude satisfies some precise specifications.  
 
As an example, after measuring the breaking strengths 1{ ,....., }x x10  of 10 randomly 
chosen safety belt webbings to verify whether or not they satisfy the requirements of 
remaining above 26 kN, the quality assurance engineer may report something like 

1 10Pr( 26 ,...., , , ) 0.9987x x x A K> = .  
 
This should be regarded as a measure, on a [0,1] scale, of the conditional uncertainty 
(given observed data, accepted assumptions and contextual knowledge) associated with 
the event that a randomly chosen safety belt webbing will support no less than 26 kN. If 
production conditions remain constant, it will also be an estimate of the proportion of 
safety belts which will conform to this particular specification. 
 
Often, additional information of future observations is provided by related covariates. 
For instance, after observing the outputs 1{ ,....., }ny y  which correspond to a sequence 

1{ ,....., }nx x  of different productions conditions, it may be desired to forecast the 
output y  which would correspond to a particular set x  of productions conditions.  
 
For instance, the viscosity of commercial condensed milk is required to be within 
specified values a and b; after measuring the viscosities 1{ ....., }ny y  which correspond 
to samples of condensed milk produced under different physical conditions 

1{ ,....., }nx x , production engineers will require probabilities of the form 

1 1Pr( , ( , ) ,...., ( , ), , )a b A K< < n ny y yx x x .  
 
This is a conditional measure of the uncertainty (always given observed data, accepted 
assumptions and contextual knowledge) associated with the event that condensed milk 
produced under conditions x  will actually satisfy the required viscosity specifications. 
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