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Summary  
 
Real measurement results of continuous quantities are not precise real numbers but 
more or less non-precise. This kind of uncertainty is different from measurement errors. 
Contrary to standard statistical inference, where the data are assumed to be numbers or 
vectors, for imprecise data statistical methods have to be generalized in order to be able 
to analyze such data. Generalized inference procedures for imprecise data are given in 
the article. 
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1. Imprecise data 

The results of measurements are not precise numbers or vectors but more or less 
imprecise numbers or vectors. This uncertainty is different from measurement errors 
and stochastic uncertainty and is called imprecision. Imprecision is a feature of single 
observations form continuous quantities. Errors are described by statistical models and 
should not be confused with imprecision. In general imprecision and errors are 
superimposed. In this article errors are not considered.  
 
Example: Many measurements in environmetrics are connected with a remarkable 
amount of uncertainty and especially imprecision. For example the data on the 
concentration of toxic substances in different environmental media are imprecise 
quantities and their measurements are  not precise. The same is true for total amounts of 
dangerous substances released to the environment. 
 
Example: The life time of a system can in general not be described by one real number 
because the time of the end of the life time- for example a tree - is not a precise number 
but more or less non-precise. 
 
Example: The results of many observations are color intensity pictures (for example 
observations from remote sensing). The resulting data are not precise numbers but 
imprecise numbers or imprecise vectors. 
 
A special case of imprecise data are interval data. 
 
Precise real numbers x 0 ∈  as well as intervals [ ],a b ⊂  are uniquely characterized 

by their indicator functions { } ( )I ⋅
x 0

 and [ ] ( ),a bI ⋅  respectively, where the indicator 

function ( )AI ⋅  of a classical set A is defined by  
 

( )
1 for
0 for .A
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⎧
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x
x

x

∈
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           (1) 

 
Often the imprecision of measurements implies that exact boundaries of interval data 
are not realistic. Therefore it is necessary to generalize real numbers and intervals to 
describe imprecision. This is done by the concept of imprecise numbers as 
generalization of real numbers and intervals. Imprecise numbers as well as imprecise 
subsets of are described by generalizations of indicator functions, called 
characterizing functions.   

2. Imprecise numbers and Characterizing Functions 

To describe mathematically imprecise observations imprecise numbers x  are modelled 
by so-called characterizing functions ( )⋅ξ , which characterize the imprecision of a 
single observation. 
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Definition 1:  A characterizing function ( )⋅ξ of imprecise number or an imprecise 
interval is a real function of a real variable with the following properties: 
 
a) [ ]: → 0,1ξ  

b) ( ) 1∃ =x x0 0:∈ ξ  

c) ( ]∀ ∈ 0,1α  the set  : { } ,B a b⎡ ⎤= ≥ = ⎣ ⎦x x:∈ ( )α α αξ α  is a finite closed interval, 

called α  -cut of ( )⋅ξ . 
 
The set (ξ(.)) : { }supp = x x: > 0∈ ( )ξ  is called support of ( )⋅ξ . 
 
In Figure 1 some examples of characterizing functions are depicted. 
 
In Figure 2 one α -cut of a characterizing function is explained. 
 

 
 

Figure 1: Examples of characterizing functions 
 

 
 

Figure 2: α -cut of a characterizing function 
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Remark: Imprecise observations and imprecise numbers will be marked by stars, 
i.e.x , to distinguish them from (precise) real numbersx . Every imprecise number x is 
characterized by the corresponding characterizing function ( ).⋅x

ξ  The set of all 

imprecise numbers is denoted by ( ).N  
 
Remark:  In fuzzy set theory a less specific analogue to the characterizing function is 
called membership function. 
 
Remark: Imprecise numbers and imprecise intervals can be considered as special fuzzy 
subsets of .  Therefore they are reasonable generalizations of real numbers and 
intervals, because precise numbers as well as intervals are classical subsets of . 
 
Proposition 1: Characterizing functions ( )⋅ξ  are uniquely determined by the family 
 

( ]( );B ∈ 0,1α α  
 
of their α -cuts Bα and the following holds 
 
( )

( ]
( )max= ⋅ ∀x x x .

∈ 0,1
∈

αΒα
ξ α Ι             (2) 

 
Proof:  Let x0 ∈  then it follows 
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and from that ( ) ( ) ( ]⋅ ≤ ∀x x0 0 ∈ 0,1

αΒ
α Ι ξ α  

and 
( ]

( ) ( )sup .⋅ ≤x x0 0
∈ 0,1
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For ( )= x 00α ξ  we obtain { } ,B a b⎡ ⎤= ≥ = ⎣ ⎦x : x x 00 0 0

( ) ( )α α αξ ξ  and therefore 
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2.1. Special Imprecise Numbers 
 
The characterizing function ( )⋅x

ξ  of an imprecise number x  or an imprecise interval 
can be written in the following way 
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where ( )L ⋅  is an increasing real function and ( )R ⋅  a decreasing real function with  
 

( ) ( )lim 0 and lim 0.L R
−

= =
x x

x x
↓ ∞ ↑∞

            (4) 

 
The following special forms of characterizing functions are frequently used: 
 
Trapezoidal imprecise numbers ( )2 1 2, , , :a at m m1  
 

( ) max 0,L
⎛ ⎞−
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⎝ ⎠

x m a
x

a
1 1

1

+
            (5) 

 

( ) 2

2

max 0,R
⎛ ⎞−
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⎝ ⎠

m a x
x

a
2 +             (6) 

 
In Figure 3 characterizing functions of trapezoidal imprecise numbers are depicted. 
 
For 2= =m m m1  so called triangular imprecise numbers  ( )1 2, ,a at m  are obtained. 

 

 
 

Figure 3: Trapezoidal imprecise numbers, also called imprecise intervals 
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Figure 4: Triangular imprecise numbers. 
 
In Figure 4 there are two examples of triangular imprecise numbers. 
 
Example:  The measurement of the concentration of a poison in the air at a fixed 
location and fixed time can be described by a trapezoidal imprecise number. 
 
The problem of how to obtain the characterizing function of the imprecise number 
describing the imprecise quantity water level is discussed in Section 3. 
 
2.2. Convex Hull of a Non-convex Pseudo-characterizing Function 
 
For continuous functions ( )⋅ϕ  which fulfill conditions (a) and (b) of definition 1 but not 

condition (c), the function ( )⋅ϕ  can be transformed into a characterizing function ( )⋅ξ  
fulfilling also condition (c): 
 
Definition 2:  Let ( )⋅ϕ  be a real continuous function fulfilling conditions (a) and (b) of 

definition 1 but not condition (c), such that some α -cuts Bα  of ( )⋅ϕ  are unions of 

disjoint intervals i,Bα,  i.e.
1 ii

B B
=

=
k

∪
α

α α,  with ; .i i iB a b⎡ ⎤= ⎣ ⎦α, α, α,  Using proposition 1  the 

so called convex hull ( )⋅ξ  of ( )⋅ϕ  is the characterizing function defined via its α -cuts 

( )( )C ⋅α ξ  by 
 

( ) ( )1 1 1 1
: min ; max .i ii i

C a b
= =

⎡ ⎤= ⎢ ⎥⎣ ⎦k kα α
α α, α,             (7) 

 
By proposition 1, ( )⋅ξ is given by its value ( )

( ]
( )max C= ⋅ ∀x x x .

∈ 0,1
∈

αα
ξ α Ι   

 
The concept of convex hull is explained in Figure 5. 
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Figure 5: Pseudo-characterizing function ( )⋅ϕ  and its convex hull ( )⋅ξ  
- 
- 
- 
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