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Summary 
 
A numerical model for the transport of persistent organic pollutants (POP) in the 
Northern Hemisphere was developed. The model admits spatial and temporal variability 
of POP in the Northern Hemisphere to be studied on the basis of European-source 
emissions and aids assessment of the percentile distributions in different environmental 
media. The interaction of lindane with soil and water surface was simulated using 
surface and stratified atmospheric boundary layer models.  
 
The transformation of POP in the atmosphere and soil was taken into account with the 
help of special modules describing its degradation in soil and atmosphere as well as 
accumulation in water. Also, considered are migration in soil and dry and wet 
deposition processes. The numerical calculations were performed for a period of one 
year, 1992, using the European Center for Medium Range Weather Forecasts (ECMWF) 
meteorological data and lindane emission data for Europe. 
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1. Introduction 
 
A great deal of anthropogenic pollutants emitted into the atmosphere and toxic 
chemicals and mineral fertilizers applied to soils enter into the biogeochemical cycles 
with a considerable impact on them. Soil is the most vulnerable to the anthropogenic 
impacts, and an important factor in the biogeochemical cycles is the transformation of 
organic species. The emissions of gaseous species are subject to a series of physical and 
chemical transformations leading to their degradation in the environment. Among these, 
POPs are of particular importance. These pollutants are industrial chemical products, 
products and by-products of combustion having low volatility, high stability and 
bioaccumulation. Also, they have low solubility (influencing the adsorption processes in 
soil and on atmospheric aerosols) and are able to transport over long distances in the 
atmosphere. The importance of studying different aspects of POPs concerning 
emissions, properties, and modeling approaches is widely accepted. 
 
There are a number of attempts to simulate the behavior of persistent organic pollutants 
both on the regional and global scales. Here we describe a tool for numerical modeling 
of the transport and transformation of a persistent organic pollutant (namely lindane) in 
the Northern Hemisphere. Lindane (the γ -isomer of HCH) is available in different 
forms and used generally as insecticide and fumigant. Lindane present in the 
atmosphere is subjected to processes of dry and wet deposition and degradation. It also 
interacts with water media through different types of transformations. In the air, lindane 
can persist for long time periods and degrade finally with the help of bacteria to less 
toxic species. 
 
2. Mathematical Model for Global Transport of Persistent Organic Pollutants in 
the Northern Hemisphere 
 
In order to assess the significance of the influence of remote pollution sources on the 
ecological state of a given region, the equations of pollutant transport in the atmosphere 
are used with due regard to the turbulent exchange and interaction of pollutant with the  
underlying surface. 
 
We formulate the model assuming the Earth’s surface to be spherical. A coordinate 
system ( zψ,λ, ) is used where λ is the longitude, ψ  is the complement of latitude and 
z  is the altitude measured from the underlying surface. The main equation of pollutant 
transport on a sphere is expressed in the following form 
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Here ( ), , ,= z tϕ ϕ ψλ  is the pollutant concentration; ( ), ,=u u v w  is the wind velocity 
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vector along , ,zψλ  directions, respectively; ,μ ν are the horizontal and vertical 
turbulent exchange coefficients, respectively; ( )F F , , ,= z tψλ  is a function representing 
emission source magnitudes; 1P describes the washout of lindane from the atmosphere; 

2P describes the degradation of lindane in the atmosphere; and a  is the average radius 
of the Earth. To account for the topography of the terrain, we turn from the spherical 
coordinate systems ( ), ,zψλ  to curvilinear one ( ) ( ), , : ,δ= −z z zψ ψλ λ , where 

( ),δ ψλ  is a function describing the topography of the terrain. Then the vertical velocity 

in the new system of coordinates ( )w is expressed as follows: δ δ= − −w w u v ψλ where 

δu λ and δv ψ are slope angles.w  is determined by the analog of the vertical velocity in 
the p-system of coordinates and geopotential. 
 
Eq. (??) is considered in the domain )D G ( T]= × ⎡⎣t 0, , where  
 

[ ]) ( ){ }G S ,H ; S , : ,π π= × = ≤ ≤ ≤ ≤ψ ψλ λ0 0 2 0 2 , H is the upper boundary of the 
numerical grid domain. 
 
The boundary conditions are given according to periodicity conditions on space 
coordinates: 
 

( , , , ) ( , , , )π=z t z tϕ ψ ϕ ψ0 2    
 

( , , , ) ( , , , )π− = +z t z tϕ ψ ϕ ψλ λ  
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2.1. Parameterization of the Planetary Boundary Layer 
 
The vertical spatial resolution in global atmospheric models is rather coarse and it is 
difficult to reconstruct the fields in the lower layers of the atmosphere with adequate 
accuracy. Therefore we calculate meteorological characteristics of the surface and 
boundary layers with the help of a parameterization scheme for the planetary boundary 
layer. With the help of the model of the planetary boundary layer the following outer 
parameters are determined at every point of the horizontal computational grid by known 
values of velocity and temperature at the first computational level: 
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where a sin cos ; a sin sin ; Ro= =x yψ ψλ λ is the Rossby number; TS  is the 

stratification parameter; ,g gu v are the components of the geostrophic wind; 0gu  is 

absolute value of geostrophic wind near the underlying surface; l is the Coriolis 
parameter; ,η ηx y are the parameters of baroclinity; θ̂ is the potential temperature; 

ˆβ θ= g  is the buoyancy parameter; g  is the gravity acceleration; and ˆδθ is the 
difference between potential temperature at the top of the planetary boundary layer and 
the underlying surface. Using the values of Ro, , ,η ηT x yS find the following values: 

*u /=g guϕ (the geostrophic resistance coefficient); α (angle between turbulent 

stresses near the underlying surface and 0gu ); 0 0h L=μ  (the dimensionless internal 
parameter of stratification). 
 
The following notation is adopted here: 0h l∗=æu is the internal scale for the 

boundary layer height; 3
0 0qβ∗= − pL c u æρ is the Monin-Obukhov length scale; pc  is 

the air specific heat at constant pressure; ρ is the air density; 0q is the surface heat flux 
near the surface. 
 
Using ,αgϕ and μ , the value of 0q is computed; then ∗u  (by gϕ and gu ) and the 
turbulent exchange coefficients at heights ≥z H are determined as follows 
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where h is the height of the surface layer. 
 
The wind velocity components are determined using the so called “velocity defect” 
concept. 
 
For the global transport, pollutants with small gravitational settling rates are of special 
interest. They remain in the atmosphere for long periods and are transported together 
with air masses. In this case, the principles of turbulence theory that are used in global 
circulation models for the description of turbulent exchange of heat and moisture could 
be applied to pollutants. In particular, the following model is used to determine the 
horizontal turbulent exchange coefficient: 
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where ΔS  is the area of an elementary grid cell and 1k is a dimensionless parameter. 
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Now we describe the basic physical principles of lindane transformations in different 
media. 
 
2.2. Flux of Lindane in the Atmospheric Surface Layer 
 
Dry deposition is one of the important processes describing the distribution of 
atmospheric pollutants and particularly lindane in the system “atmosphere-soil-water”. 
In the atmosphere it is influenced by a a number of factors including temperature 
stability of the atmosphere, type of pollutant, characteristics of the underlying surface. 
The dry deposition is described by the resistance of the pollutant with surface as a sum 
of the following three terms: 
 
 Aerodynamic resistance ( ar ) conditioned by the inner turbulence layer and 

depending essentially on the stability of the atmosphere; 
 Quasi-laminar boundary layer resistance br , conditioned by the molecular diffusion 

process just near the earth’s surface; 
 Surface resistance ( cr ) connected with the process on the deposition surface; 

 
The surface flux of lindane can be written down as  
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In what follows, we describe how ar  is determined. To set the boundary condition 
at =z h , the Monin-Obukhov theory is used stating that the turbulent flux of a pollutant 
(along with heat and momentum fluxes) can be taken constant by height. Then for 
≤z h the following relationships hold 
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Where ∗ϕ is the scale for concentration changes; , fηϕ ϕ are universal continuous 

functions; = z Lζ is dimensionless height characterizing atmospheric stability; indices 

0  and h  and related to levels =z z0  and =z h  respectively; L  is the length scale; z0 is 
the roughness parameter; æ is the von Karmann constant; νϑ  is the vertical turbulent 
exchange coefficient; ∗u  is the dynamic velocity. Because of lack of empirical data for 
functions f , ,η∗u ϕϕ and fϕ , it is supposed that, due to similarity of the physics of the 

turbulent exchange by heat and passive substances, the coefficients ϕν and νϑ can be 

taken to be approximately equal, implying that η η=ϕ ϑ and f f=ϕ ϑ . Here ηϑ and fϑ are 
the respective universal functions for temperature. 
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Multiplying Eq. (??) by h( )ϕν we arrive at  
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which along with Eq. (??) can be used as boundary condition for ≥z h . 
 
ϕ0  is determined from the pollutant balance equation on the surface: 
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where I  is the emission on the earth’s surface. 
 
Note that in corresponding universal functions the molecular resistance br  is also 
accounted for. Thus 
 

.
ϑ

=a
u

r
c c u
1  (15) 

 
To calculate ar , the quasistationary surface layer model is used. For the strong instability 
area with no reliable measurement data, the so-called “-1/3”-law is adopted which 
results from similarity theory. For the strong stability area, a linearity law is assumed. 
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The surface resistance cr  is calculated by  
 

,
/

= +
+ +c s m cr r r r rcuticle

1 1 1
1

  (16) 

 
where sr is the stomata resistance; mr  is the mesophyle resistance; and rcuticle  is the 
cuticle resistance. 
 
The stomata resistance is a function of photosynthesis-active radiation, air temperature, 
leaf water potential, and vapor pressure deficit. The resistance to gas uptake by 
mesophile cells is determined by the area of the mesophile and gas solubility (≈0.1-0.5 
cm s ). The cuticle resistance is linked with the gas uptake on leaf surface. This 
resistance depends on the chemical characteristics of gases and leaf surface area (≤ 200 
cm s ). 

 
2.3. Soil-atmosphere Exchange 
 
In soil, lindane exists mainly in the following three states: water (dissolved) ( Lϕ ); 
gaseous ( gϕ ); and absorbed ( sϕ ); the crystal state is not considered here. 
 
The concentration of lindane can be so represented in the form:  
 

( )= + + ΦT L gϕ ρ ϕ ϕ ϕϑ ϑS S −  (17) 
 
where ρS is the volume density of soil; ϑ  is the volume humidity of soil; Φ is soil 

porosity; , ,Lϕ ϕS and gϕ are the concentrations in adsorbed, liquid, and vapor states, 
related to the soil solution mass, skeleton, and free vapor space, respectively.  
 
The equilibrium of POP exchange between liquid and gas phases is quantitatively 
characterized by Henry’s constant. This is the ratio of the concentration in the gas phase 
at equilibrium to that of a solution. Henry’s constant (like saturated vapor pressure and 
solubility) depends on the chemical composition of the water phase and temperature. 
The adsorption of POP by atmospheric aerosols essentially depends on the relative 
humidity of air. At a definite level of the latter, mono-layer of adsorbed water molecules 
emerged in the soil surface. Increased numbers of these mono-layers lead to particles 
that have lost their initial features and turned to pure-water like ones. With increasing 
values of the relative humidity, the specific volume of the surface changes affecting the 
adsorption, leading to closure of different-size PORS, and decreasing the POP sorption. 
At the relative humidity values close to saturation, atmospheric aerosols are a three-
phase system consisting of solid particles, water that covers them, and air. Interphase 
distribution of POP is determined by their solubility in water and by adsorption from the 
solution to the particle surface. The equilibrium of the first process is characterized by 
the Henry constant, and that of the second by the distribution coefficient related to the 
organic content. 
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Assuming that a POP obeys Henry’s law, we get 
 

=g H LKϕ ϕ     (18) 
 
where HK is the dimensionless Henry’s constant. Since for most POPs, the 
characteristic time of concentration change in soil is greater than that of sorption and 
desorption, an instantaneous sorption equilibrium approximation can be assumed. In the 
linear approximation, the relationship between the adsorbed and dissolved phases can be 
represented as  
 

= d Lkϕ ϕS     (19)  
 
where dk is the adsorption isotherm tilt, or distribution coefficient. 
 
Using Eqs. (??)-(??), we obtain 
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are the coefficients for different states of lindane. Henry’s coefficient is given in the 
general case by the formula. 
 

( )1 1
1 T T0

b
e

−
=H HK K

0
    (21) 

 
where 0( )=H HK K T

0
and b1 is an empirical constant. 

 
The adsorption of lindane in soil depends on soil properties, and, particularly, on 
organic matter content. To account for the latter, a coefficient for carbon distribution 
( )ocK is introduced: 
 

o of=d c ck K     (22) 
 
where of c is the fraction of organic matter content in soil. In numerical calculations, 

organic content data of FAO global data base are used. The resolution is1 x 1 , with 27 
types of organic soil in total and 9 categories of organic content (ranging from1% to 
30% ) for the upper 30-cm layer. 
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