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Summary 
 
In this chapter we try to introduce the reader to the main features of Mathematical 
Modeling. Modeling is now a very fashionable word and is widely used to name a 
complex scientific activity where the computer plays a central role. But actually 
mathematical modeling is not a new activity and was practiced for a long time by 
scientist.  
 
Among them, engineers developed a theory called Mathematical Systems theory. It was 
developed, mostly during the twentieth century for the purposes of understanding the 
dynamics of complex man-made devices. It was a theory for engineers and was mainly 
developed in electrical engineering departments. It is now a mathematically 
sophisticated science. 
 
By the middle of the twentieth century two major events had taken place: The 
development of computer facilities and the rise in interest in the dynamics of life 
systems. For these reasons Mathematical Systems theory became more and more used 
for the modeling of natural systems as opposed to artificial ones and we decided to 
focus on this aspect of mathematical modeling. Of course this is not the only possible 
approach. 
 
The chapter is divided in four sections. The first and the last are devoted to 
methodological issues and the two intermediate ones to more technical aspects of 
Mathematical Systems Theory. In the first section we insist on the need for mathematics 
in modeling activity. The first ingredient of Mathematical Systems Theory is the 
classical mathematical concept of dynamical system, either continuous or discrete with 
respect to time, finite or infinite-dimensional with respect to the state space, 
deterministic or stochastic.  
 
This is described in Section 2. The second ingredient, described in Section 3, comprises 
the concepts of input and output, which are absolutely necessary to define what a 
feedback is. We will see how these concepts are useful for the modeling of few natural 
systems. After this introduction to the major concepts of systems theory we shall give a 
very brief account on controllability, observability and stabilizability. We shall explain 
the major results for the case of linear systems and give few indications on the possible 
generalization to nonlinear systems. In the last section we come back to modeling and 
consider the various possible uses or misuses of a model. 
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4B1. Introduction 
 
1.1 A Fashionable Word 
 
The use of the word “modeling” in sciences is relatively recent. Scarcely used during 
the last century it is now a fashionable word, but “mathematical modeling” is not a new 
activity, even if had not appeared under this name before. As we know, the classical 
theories of physics express their law through a mathematical apparatus, the “equations” 
as we used to say formerly, that could be called a “mathematical model” in our present 
language. But we are not mainly concerned with this kind of model in the present 
chapter, despite the fact we often shall refer to them for comparison purposes. 
 
We shall consider the word “model” in the engineering tradition of the last century, 
who, before the computer achievement, used to build “reduced models”. Nowadays, the 
models used by engineers are symbolic representations, expressed in a language that is 
possibly recognized by a computer, of some complex and changing real system. The 
computer simulations of the dynamic generated by the model are used to solve a great 
variety of practical questions.  
 
In his classical mathematical text-book, “Ordinary Differential Equations”, the famous 
mathematician Pontryagin relates an important practical problem which was solved 
thanks to a mathematical model: The question of the stability of Watt’s governor for 
steam engines. The Watt governor was invented by the end of the eighteenth century 
and was perfectly suitable for its purposes for some time. It turned out that, by the 
middle of the nineteenth century, the functioning became worse and worse. A 
mathematical model of the motion of the steam engine with its governor was elaborated, 
and a mathematical theory of the stability of motion was simultaneously elaborated by 
the Russian Wischnegradsky and the famous physicist J. C. Maxwell around 1870. 
 
 In that case the mathematical model was a set of three differential equations established 
on the basis of Newton’s laws of mechanics for an artificial apparatus designed by man. 
Since that time, “Automatic Control Theory” has become the science whose aim is to 
provide engineers with the tools for achieving the regulation of more and more complex 
systems as in modern aircraft, industrial processes, electrical networks, etc.  
 
During a little more than one century, automatic control theory has developed for its 
own use a theory of mathematical modeling with efficient concepts and highly 
mathematically sophisticated developments. This theory was well developed when the 
computer appeared at the middle of the twentieth century and was able to incorporate 
this revolution harmoniously. We call this theory Mathematical Systems Theory. 
 
More recently, say for half a century, there has arisen a need for a more quantitative 
theory of the dynamics of complex natural systems. (The existence of the EOLSS is a 
good example of this new important challenge facing humanity and we do not pursue on 
this point here). The representation of ecological systems dynamics through 
mathematical equations was present a long time ago, at the beginning of the century, but 
the nonlinear equations were too complex for a mathematical treatment. Thanks to the 
fantastic computing power of modern computers one can simulate more and more 
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complex systems of equations. Thanks to the low cost of modern personal computers 
and to the facilities of new computer languages, more and more people conduct 
simulations for various purposes. What is the scientific value of such simulations? This 
is a big issue and mathematical modeling is a way, if not the only way, to address it. 
In this introduction we shall describe what mathematical modeling is in the spirit of the 
traditional training of automatic control engineers and try to see to what extent this 
methodology is suitable for areas of research other than industrial production. 
 
1.2 Modeling: A Complex Activity 
 
A picture like the one in Fig. 1 is by itself all a philosophical program! We begin by 
some comments about it. In this picture we observe a first ensemble called “piece of 
reality” which feeds (arrow 1) another ensemble called “discourse about reality”. This 
possibility of a crude separation between an objective “reality” which exists 
independently and previously to any discourse, and the “discourse about this reality” is 
quite questionable.  
 
The question of the existence of an objective world, and the possibility of a non-
subjective analysis of it, is a formidable philosophical question that we shall not 
consider here. We shall adopt the following pragmatic point of view. We accept that 
there are circumstances where the existence of an object to be studied, the piece of 
reality, is quite clear.  
 
For instance if the problem is to realize a flight simulator for an aircraft, say an Airbus 
A320, the piece of reality is well defined. Small ambiguities, like what kind of engine or 
instrumentation is used, will be easily clarified. Another example: Make a model of the 
growth of the temperate-climate oak. 
 
 In this case also, even if it seems a little more difficult to agree on what an oak is and 
what means its growth, clearly a general consensus is possible. 
 
But, “set up a model of the functioning of the tropical forest” is clearly a different 
question. If the rain forest is a relatively well understood object, what does it mean, “its 
functioning”? Are we speaking of productivity or are we interested by the biodiversity it 
can sustain?  
 
The question about the “good” use of such a tropical forest might be different if you are 
a poor peasant of Brazil or a rich citizen of an industrialized country. Different points of 
view, even contradictory points of view are to be expected.  
 
Even more difficult is the problem of the separation between a subject and an object 
when considerations about human psychology are concerned. Is it possible to make a 
model of the behavior the Stock Exchange, since people who know the model will 
change their behavior?  
 
Mathematical modeling assumes that there is an “object” and a “subject” making a 
discourse on this object. We know that it is not always the case but we do as if it were 
the case. 
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Fig. 1:  The model and the real world 
 
In Fig. 1 we have drawn some rectangles to indicate “models”. There are several 
models, n 1, n 2…  recalling the fact that, for the same object, there are many different 
viewpoints and by the way many different models. By this we mean that, in mechanics 
for instance, we do not use the full equations of relativity to represent the motion of an 
airplane, but Newton’s equations, which comprise a simplified model. But we do not 
mean only this. We mean that some objects may have several models which are both 
necessary to describe it and not reducible one to each other. The best instance for this 
fact is probably quantum mechanics, where wave and particle models are both necessary 
to describe the same reality.  
 
The arrows 2.1, 2.2, … define a connection between the model and the discourse about 
the reality. This is the work of interpretation. By the interpretation we mean the 
following point. Suppose that we are interested in two interacting populations, say a 
prey and a predator. The number of prey is of the order of magnitude of 910  and the 
predators of 610  (this is plausible in the case of a relation between fishes and small 
plankton) and choose the 910  as unity for the prey and 610  for the predators. Denote by 

( )x t  and ( )y t  the quantity of prey and predators in these units. Because of this choice 
( )x t  and ( )y t  appear to be real numbers, (i.e. numbers with decimals). Assume that we 

build a model in terms of differential equations and that the model has the property that, 
when t tends to infinity, ( )x t  tends to zero. The “first degree” interpretation of this 
application of the model is that the prey population extinguishes. But one must be 
careful since the justification for working with real numbers was the fact that the 
numbers of prey was large, of the order of 910  which will no longer be the case if ( )x t  
tends to 0. So, when ( )x t  decreases, it follows that at some moment the model is no 
longer appropriate to represent reality and we must think about it. Thus ( )x t  tending to 
0 in this model means that the population of prey decreases below some threshold, no 
more. In some sense, what we call interpretation is the art of modeling itself, but we 
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prefer to keep the word modeling for the more complete process that we are presently 
describing than just for the activity of interpretation of mathematical results. Another 
reason why we do not want to call modeling the activity of giving sense to mathematical 
facts is because in this respect astrology could also be called modeling, since it is an 
activity in which one gives interpretations of fact about celestial objects that can be 
predicted mathematically! 
 
In the scientific modeling activity the predictions of the model are to be compared to 
reality by means of empirical data. This is shown through arrows 4.1, 4.2… that concern 
empirical data that are produced in laboratories where the “piece of reality” is 
extrapolated, or data produced directly by the “piece of reality itself” (arrows 5.1, 
5.2…). We make a distinction between data that are produced directly by reality and 
those that are produced in a laboratory. The second are very secure while the first are 
subjected to errors of various origins. Most of “life support systems” are complex 
systems in the sense that we cannot reduce them to the laboratory and by the way they 
often lack of good data. This is a reason why we try to understand large complex 
systems but we must remember that no model can replace good data. 
 
1.3 The Need for Mathematics 
 
By definition a mathematical model must have a strong connection with mathematics! 
This is represented by the arrow 3. A mathematical model is by itself an object, which is 
inserted in a more or less well-developed theory. It is this mathematical theory that 
gives to the model its utility. Let us consider an example. In a lake (which water is 
supposed to be at rest), one represents by ( , , )U t x y  the concentration of some pollutant 
at the point of coordinates ( , )x y  at time t. The pollutant diffuses in the water, and the 
evolution of this concentration during time can be represented by the system of 
equations: 
 

0 0

2 2
2

,2 2
( , , ) ( , , ) ( , , ){ } ( )

( , ) 0

x y
U t x y U t x y U t x yk t

t x y
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∂

 

 
which express that the flux at the boundary of the lake is null and that the pollutant 
source is located at the point 0 0( , )x y . From the knowledge of the function ( )tφ , one 
can compute (analytically in some cases, with computer simulations in other cases) the 
value of U at any point at time t. From the knowledge of the position of the emission of 
pollutant one can deduce the future pollution at each point. This is not very surprising; 
we are accustomed to longstanding successes in celestial mechanics, that mathematical 
models predict the future motion. Maybe more surprising is the following: Assume that 
we know the intensity of the pollution at one, or some points, in the lake; is it possible 
to recover, from this information, the position and the intensity of the emission of 
pollutant? The answer is ‘yes’. These kinds of problem, known as inverse problems in 
mathematics, have a long history, and have been solved recently for wide classes of 
useful equations. It must be noticed that if the question of prediction of future pollution 
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from the knowledge of the pollutant source requires relatively few mathematical 
technicalities and can be implemented on a computer quite easily, the solution of the 
inverse problem requires high mathematical sophistication. 
 
There is another reason why a mathematical theory is necessary when we develop 
models. As we said we need to make simulations and we need to interpret them. Since 
the simulation is done on a computer that is not able to compute with ideal real numbers 
there are numerous artifacts related to the computation itself, which must not be 
interpreted as properties of the model. The way to measure the distance between 
mathematical ideal solutions and the actual simulations comprise a wide body of 
knowledge that was developed for the use of computers and is called numerical 
analysis. 
 
Becoming more and more common are models of simulation, computer models, which 
are built directly from the discourse about reality, using high-level languages that fit 
perfectly with the purpose of modeling. The temptation, for non-mathematicians, is to 
try to avoid mathematics. Our position here is that a model, by itself, needs a theory. 
The physical theory that explains how the electron microscope works has nothing to do 
with the biology of cells that are observed but it is necessary to understand the image 
that one sees. Computer simulation is to the knowledge of the dynamics of complex 
systems what the microscope is to the vision of the infinitely small: It is a tool that also 
needs its own theory. The theory of the model, which must not be confused with the 
theory of the piece of reality which the model describes, must be done in the language 
of mathematics. 
 
1.4 Orientation of the Chapter 
 
We first (Section 2) give an account of the concept of mathematical dynamical systems, 
including infinite dimensional systems and stochastic processes. The importance that we 
give to each aspect of dynamical systems does not reflect the importance they occupy in 
the mathematical world because our objective is not to give a fair description of the 
subject but to introduce the mathematical tools that are useful for modeling. We tried to 
explain concepts through examples that we choose more in the life sciences than in 
physics since we think that people trained in the exact sciences have already a general 
understanding of the subject. 
 
In the Section 3 we give an extensive account of mathematical systems theory for the 
reasons we explained earlier. The basic concept developed in this section is the concept 
of an input-output system. 
 
In the forth and last section we ask the question: A model for what purposes? We 
suggest the following classification. 
 
• Models for understanding, where the model has no pretension of being in 

accordance with empirical data but simply sheds light on the discourse. 
• Models for description and prediction which have qualitative and quantitative 

connections with the real world. 
• Models for purposes of control. 
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5B2. The Mathematical Concept of Dynamical System 
 
Every scientist has his own idea of what an actual dynamical system is. For a physicist it 
could be a set of point masses interconnected by strings, occupying various places 
through time. For an oceanographer it could be the displacement of masses of oceanic 
water. For the agricultural engineer, who fights against insects, it could be the evolution 
during the season of their number in response to his action. For an economist it could be 
the evolution of prices of goods related to their production. It is not useful to multiply 
these kinds of examples. But now consider the following sentence: “The spirit of this 
man has changed: he was careless and casual but now we can be confident in him”. This 
sentence says that something changed during the time: the spirit of a man. But, opposed 
to the preceding examples, where there was something to quantify, the position, the 
production, etc… there is hardly something comparable in the case of the spirit. This is 
the reason why the mathematical concept of a dynamical system is not very useful in 
such questions. In the game of love mathematicians have no more nor less success than 
anyone! 
 
The mathematical concept of a dynamical system was certainly elaborated in view of 
the development of classical mechanics since the discovery of its laws by Newton. We 
shall not attempt in this chapter to recall the history of this mathematical concept, which 
we assume to be more or less familiar to the reader. We just want to recall what the 
various types of dynamical systems are and fix some notation. A most important 
concept in the theory of dynamical system is that of state and state space. We try to 
make this concept clear in this section. 
 
- 
- 
- 
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