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Summary  
 
We give the description and motivations of some mathematical models arising in 
biology, in discrete and continuous time. 
 
1. Discrete-time Models 
 
We will consider in this section models describing a phenomenon varying with time: the 
time will be discrete, but the variables of the model will be continuous (real numbers). 
We will give some examples, mainly taken from biological models. The basic methods 
for studying these models will be given in the next section.  
 
1.1. A Model for Cell Division 
 
The simplest model for this category is maybe the model of the division of a cell into a  
daughter cells, at each generation. Let us suppose that the number of cell is ( )x k  at the 

thk  generation (the index in the initial generation is taken as 0). Then, the number of 
cells at the next generation will be:  
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( 1) ( )x k ax k+ = . 
 
The number of cells will be successively  
 

2(0), (0), (0), , (0)nx ax a x a x… . 
 
These numbers follow a geometrical law. If a  is greater than one, the population will 
grow over successive generations, and become unbounded.   
This situation is not very realistic, because from a biological point of view the 
population will be subject to limitations of the resources. Some models describe the 
limitations to be proportional to the square 2x  of the population, because of the 
competition between individuals. The model becomes: 
 

2( 1) ( ) ( )x k ax k bx k+ = − , 
 
where b  is a positive parameter describing the strength of the competition. It is called 
the logistic equation, and has become one of the most famous simple nonlinear models; 
it has a wide spectrum of behavior, from stability to chaos (see Complexity, pattern 
recognition and neural models). There are many other discrete models for a single 
population (see Mathematical Models of Biology and Ecology). 
 
1.2. Matrix and Leslie Models 
 
Often biologists wish to model the life cycle of a population in a more structured way. 
The Leslie matrices describe the transitions between the categories, or stages, 
determining the life cycle. The simplest model describes the transition between age 
classes, with the hypothesis that all the individuals in an age class either die or go to the 
next class. Let us take the example of three age classes; the life cycle can be represented 
in an intuitive way on a graph with nodes (the age classes) and arrows (the possible 
transitions). In Figure 1, the transitions are possible from age 2 and 3 towards the first 
age class; that means that the ages 2 and 3 are fertile.   
 
The set of equations describing the growth for the time k  is:  
 

1 2 2 3 3

2 1 1

3 2 2

( 1) ( ) ( )
( 1) ( )
( 1) ( )

x k F x k F x k
x k P x k
x k P x k

+ = +
+ =
+ =

 

 
or in matrix form  
 

( 1) ( )x k Ax k+ =  
 
with  
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2 3

1

2

0
0 0

0 0

F F
A P

P

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 
The parameters iF  are the fertility coefficients, and iP  are the probabilities of survival. 
This kind of matrix is called a Leslie matrix, and has particular mathematical properties 
linked with Perron-Frobenius theorem (see next section). The model itself is a linear 
matrix model, with constant coefficients. The mathematical study shows that the 
solutions of this model have a dominant behavior, that can be characterized by a 
dominant growth rate (called dominant eigenvalue) playing a role quite similar to the 
growth rate of our geometrical law in one dimension. If this dominant eigenvalue 1λ  is 
greater than one, then the numbers of individuals in every age class grow and become 
unbounded. If 1λ  is smaller that one ( 1λ  is nonnegative), then the population goes 
extinct. Cyclic behavior is possible, as can be seen by taking 2 0F =  (case when the 
second age class is not fertile), and the other parameters equal to one; if the population 
starts with some number in the first age class and nothing in the second and third age 
classes, then this number simply jumps from one age class to the next, without alteration 
(see Basic Methods of the Development and Analysis of Mathematical Models).   
 

 
 

Figure 1. A life cycle 
 
The Leslie models, or, more generally, the life cycle models are very appealing to 
represent complex transitions in the life of organisms; but they cannot incorporate 
nonlinear effects that appear frequently in the biological processes.  
 
1.3. Nonlinear Discrete Models 
 
Let us consider the equation giving the number of the first age class:  
 

1 2 2 3 3( 1) ( ) ( )x k F x k F x k+ = + . 
 
The linear relation between the older age classes and the first one is not very realistic; a 
more refined model could be to suppose (and to justify with experimental data) that the 
relation is nonlinear, and that the number of young decreases when the total number 

1 2 3( ) ( ) ( ) ( )s k x k x k x k= + +  increases. A possible model is:  
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( ) ( )
1 2 2 3 3( 1) ( ) ( )bs k bs kx k F x k e F x k e− −+ = + , 

 
where the function ( )bse −  is introduce to represent the decreasing of fertility when the 
density increases. We obtain a density-dependent nonlinear model; the behavior (and 
the mathematical study...) can be complicated.  
 
One can also build nonlinear models with no matrix structure; let us cite, among many 
others, the Nicholson-Bailey model which describes the interaction between hosts and 
parasitoids. This is a simplified description for the complex and interlaced life cycles of 
the two species. The parasitoid deposits its eggs in an host (this host being at some stage 
of its life, often larval or pupal), that becomes a parasited host; the eggs develop at the 
expense of the host, eventually killing the host. Let 1x  the density of host and 2x  the 
density of parasitoids, then the model is:  
 

1 1 1 2

2 1 1 2

( 1) ( ) ( ( ), ( ))
( 1) ( )(1 ( ( ), ( ))).

x k x k f x k x k
x k cx k f x k x k

λ+ =
+ = −

 (1) 

 
The parameter λ  is the host reproductive rate, c  is the average number of eggs laid by 
the parasitoid in the host. The function 1 2( ( ) ( ))f x k x k,  is the fraction of non-parasited 

hosts, and is chosen to be 2 ( )ax ke− , given the hypotheses that the encounters are random, 
and choosing a Poisson probability distribution to describe the first encounter. This 
leads to the model:  
 

2

2

( )
1 1

( )
2 1

( 1) ( ) )

( 1) ( )(1 ).

ax k

ax k

x k x k e

x k cx k e

λ −

−

+ =

+ = −
 

 
It can be shown (see Basic Methods of the Development and Analysis of Mathematical 
Models) that this model has an equilibrium, and that this equilibrium is unstable: an 
initial condition near the equilibrium results in diverging oscillations.  
 
2. Continuous-time Models 
 
We consider in this section the continuous models which describe a phenomenon 
varying in time. The time will vary continuously. Assume that we have selected the 
state variables ( )x t  at time t . It remains to write the equations giving the state variables 
at time t t+ Δ  where tΔ  is a very short interval of time. Let us denote by ( , ( ))f t x t tΔ  
the variation of ( )x t  during time tΔ :  
 

( ) ( ) ( , ( ))x t t x t f t x t t+ Δ − = Δ . 
 
This equation can be rewritten as  
 

( ) ( ) ( , ( ))x t t x t f t x t
t

+ Δ −
=

Δ
. 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICAL MODELS - Vol. I - Classification of Models - Jean-Luc Gouzé, Tewfik Sari 
 
 
 

©Encyclopedia of Life Support Systems(EOLSS) 

Let us postulate the existence of a time derivative  
 

0

( ) ( )( ) lim
t

dx x t t x tt
dt tΔ →

+ Δ −
=

Δ
, 

 
which we shall usually denote by ( )x t . Thus, if we go to the limit when tΔ  goes to 0 
we can write  
 

( ) ( , ( ))x t f t x t= . (2) 
In general ( )x t  is a vector of n  real variables 1( ) ( ( ), , ( ))nx t x t x t= , so that, the above 
equation is a set of differential equations or a differential system  
 

1 1 1

1

( ) ( , ( ), , ( ))

( ) ( , ( ), , ( )).

n

n n n

t f t x t x tx

t f t x t x tx

=

=
 (3) 

 
- 
- 
- 
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