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Summary  
 
In this chapter, we are concerned with Chaos theory and Cellular Automata theory. 
These two theories have in common the fact that they were very popular some time ago 
and the fact that they are intimately connected to the development of digital computing.  
 
The chapter is divided in two parts the first one developed to chaos, the second one 
devoted to cellular automata. We do not try to make a survey of all aspects of these 
theories. We just concentrate on few aspects which seem to be relevant to modeling and 
give cautionary advises relative to these theories in the process of modeling. 
 
1. Chaos 
 
1.1. Introduction 
 
Compare the two signals in Figure 1a: 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICAL MODELS – Vol. I - Chaos and Cellular Automata - Claude Elysée Lobry 

©Encyclopedia of Life Support Systems(EOLSS) 

 
 

Figure 1a: Two signals 
 
They look very different; the one below is nicely periodic since the one above has 
apparently no regularity. It looks random. But it is not ! Both signals are obtained by 
iteration of the very simple scheme: 
 
(1)      ( )1 1n n nU U U+ = λ −  
the first one with 3.8λ =  the second one with 3.5λ = . This is a definitely deterministic 
process ! The first signal is called chaotic because it is different from a pure random 
signal. 
 
To make the difference between chaos and pure random we compare the chaotic signal 
above with the signal obtained by plotting successively the result of a call to the 
“random” function of a computer. One obtains the function shown in Figure 1b: 
 

 
 

Figure 1b: A random function 
 
This signal looks similar to the chaotic one but if we plot, not the value of the signal 
against time, but the value at time 1n +  against the value at time n we obtain the 
function in Figure 2: 
 

 
 

Figure 2: Chaotic and random signals 
 
This illustrates the essential difference between chaotic signals and random signals. The 
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ideal mathematical concept of randomness requires that two successive occurrence of 
nU  must be independent, which means that the probability of appearance of any value 

of 1nU +  is not affected by the knowledge of nU . The visual consequence of this is the 
apparently uniform repartition on the square of the occurrences of the points of 
coordinates ( )1,n nU U+ . Actually definition of perfect randomness is more stringent and 
requires that all finite sequences are mutually independent, but we do not go further in 
this direction. Completely different is the chaotic signal. Since the next 1nU +  is related 
to nU  by the functional relation: 
 

( )1 3.8 1n n nU U U+ = −  
 
it is not surprising at all that all the point of coordinates ( )1,n nU U+  are contained in the 
graph of the mapping: 
 

( )3.8 1U U U→ −  
 
Notice that the “random” process of our computer is not able to realize a true 
mathematical pure random process, but only an approximation of it by some 
deterministic device. 
 
1.2. One Dimensional Discrete Chaotic Systems   
 
Consider a mapping f from some bounded subset K of nR  into itself and consider the 
dynamical system defined by: 
 

( )1n nx f x+ =  
 
and denote by ( )n ox x  the trajectory issued from ox  (this means the sequence issued 
from ox  and defined by induction with the above formula. 
 
Definition   : Sensitivity to initial conditions 
 
One says that the system possesses the property of sensitivity to initial conditions on 
some subset A of K if there exist some positive number M such that for every ox  in A 

and for every (small) positive ε  one can find some initial condition ox ′  and an integer n 
such that: 
 

( ) ( )n o n ox x x x M′− ≥  

 
We illustrate this by the following experiments with the system (1) for the value 0.8 of 
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the parameter. We have plotted the difference ( ) ( )0 0n nU U U U ′−  for initial conditions 

differing successively from 6 9 1210 , 10 , 10− − −  in Figure 3. 
 

 
 

Figure 3: The function ( ) ( )0 0n nU U U U ′−  for different initial conditions 

We see that for few iterates (15,25,35) the two trajectories are impossible to distinguish 
(up to the precision of the pixel of the screen) and then, abruptly, the difference 
becomes visible ant unpredictable. The difference grows exponentially which means 
that to add some constant number to the number of iterates where the trajectories are 
undistinguishable one has to divide by some constant factor the distance of the two 
initial conditions; in our example one have to divide by 1000 to obtain ten more 
iterations. 
 
Definition : We say that system (2) is chaotic if it has a trajectory which is dense on a 
subset A which is an attractor, if it has the property of sensitivity to initial condition on 
subset A and, moreover, periodic orbits are dense in A. 
 
Because of the sensibility to initial condition, what is the meaning of our numerical 
computations is not clear. All what we know is that our computer simulation has 
nothing to do with the actual trajectory ! Fortunately there is a deep mathematical result 
which state (in a precise mathematical way) that every computer simulation is actually 
close to the true trajectory issued from an initial condition which is not the one we used 
in the computation but is close to it. By the way, in a chaotic system, it is impossible to 
predict the trajectory issued from an initial condition but what we compute is a typical 
possible outcome of the system. 
 
1. 3. Two Dimensional Discrete Chaotic System  
 
So far we have considered a one dimensional chaotic system. An example of a famous 
chaotic system in two dimensions is the Hénon mapping, proposed in 1976. Consider 
the mapping: 
 
( ) ( )2, 1 ,x y y ax bx→ + −  

 
and the iterations: 
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Figure 4: Two successive enlargements for the iterates of the Hénon mapping 
for the values 1,4a =  and 0.3b = . Figure 4 shows 710  iterates of this mapping starting 
from some initial condition. 
 
Each enlargement is a copy of the previous picture. This is another feature of chaotic 
systems. The fractal nature of each trajectory. 
 
- 
- 
- 
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